pm mfvt1
    • Main page
      • About journal
      • Articles. Working with contents
      • Editor-in-chief
      • Editorial Council
      • Editorial Board


      • For authors
      • Standards for formatting information
      • Reviewing
      • Politics editorial board
      • Ethics of journal publications


      • For advertisers
      • Subscription
      • About the Publishing House
      • Contact us
  •  Using artificial intelligence for diagnosing Parkinson’s disease

    Редактор | 2024, Original articles, Practical medicine part 22 №1. 2024 | 30 января, 2024

    Z.A. ZALYALOVA1, 2, I.A. KHASANOV3, D.M. KHASANOVA1, G.R. ILINA1, Т.A. KUTNIKOVA4, О.L. PLESHKOVA5, Z.R. ALIMETOVA2, Е.A. GUBAREVA6

    1Republic Consultative and Diagnostics Center for Extrapyramidal Pathology, Kazan

    2Kazan State Medical University, Kazan

    3BRAINPHONE Digital Solutions for Diagnostics of Brain Disorders LLC, Kazan

    4Orenburg Regional Clinical Neuropsychiatric Hospital of War Veterans, Center for Extrapyramidal Pathology, Orenburg

    5AS Neurology LLC, Izhevsk

    6Tolyatti City Clinical Hospital No. 5, Tolyatti

    Contact details:

    Khasanova D.M. – Ph. D. (medicine), neurologist

    Address: 5 Isaev St., Kazan, Russian Federation, 420039, tel.: +7-905-039-88-95, e-mail: diana.khasanova1987@gmail.com

    In the article we discuss the features of Parkinson’s disease (PD) diagnostics: the generally accepted clinical criteria, their sensitivity and specificity compared to modern diagnostic methods like a voice diagnostic service for PD based on artificial intelligence technologies.

    The purpose was to clinically test a prototype of a voice-based PD diagnostic service developed as part of the BRAINPHONE project.

    Material and methods. 100 patients (a balanced sample) who applied to the Republic Consultative and Diagnostic Center for Extrapyramidal Pathology (Kazan) were included in the unselected cohort clinical study. All patients were first examined by two experienced specialists in Parkinson’s disease and then by a trained neural network. The neural network conclusions options were «Parkinson’s disease cannot be excluded» or «No signs of Parkinson’s disease» (decision threshold 0.5).

    Results. As a result of testing the service, the following data were obtained: sensitivity — 80%, specificity — 92%. Compared with the generally accepted clinical criteria for diagnosing PD, voice diagnosis using a trained neural network developed within the BRAINPHONE project in this study showed comparable results in sensitivity and better results in specificity.

    Key words: Parkinson’s disease, diagnostics, artificial intelligence, voice diagnostics, parkinsonism, voice.

    REFERENCES

    1. Zalyalova Z.A., Khasanova D.M. Evolution of predictors of early Parkinson’s disease. Byulleten’ Natsional’nogo obshchestva po izucheniyu bolezni Parkinsona i rasstroystv dvizheniy, 2022, no. 2, pp. 72–75 (in Russ.). DOI: 10.24412/2226-079X-2022-12438
    2. Katunina E.A., Zalyalova Z.A., Pokhabov D.V. et al. Parkinson’s disease. Focus on the early stages. Nevrologiya, neyropsikhiatriya, psikhosomatika, 2023, vol. 15, no. 3, pp. 95–103 (in Russ.).
    3. Postuma R.B., Berg D., Stern M. et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord, 2015, vol. 30 (12), pp. 1591–601. DOI: 10.1002/mds.26424
    4. Hughes A.J., Daniel S.E., Kilford L., Lees A.J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease. A clinico-pathological study of 100 cases. JNNP, 1992, vol. 55 (3), pp. 181–184. DOI: 10.1136/jnnp.55.3.181
    5. https://www.movementdisorders.org/MDS/News/Newsroom/Position-Papers/MDS-Position-Diagnosis-of-PD.htm (accessed on: 26.12.2023).
    6. Ministerstvo zdravookhraneniya Rossiyskoy Federatsii. Klinicheskie rekomendatsii “Bolezn’ Parkinsona, vtorichnyy parkinsonizm i drugie zabolevaniya, proyavlyayushchiesya sindromom parkinsonizma”, 2022 [Ministry of Health of the Russian Federation. Clinical recommendations “Parkinson’s disease, secondary parkinsonism and other diseases manifested by parkinsonism syndrome”, 2022], available at: https://cr.minzdrav.gov.ru/recomend/716_1 (accessed on: 26.12.2023).
    7. Trail M., Fox C., Ramig L.O., Sapir Sh., Howard J., Lai E.C. Speech treatment for Parkinson’s disease. NeuroRehabilitation, 2005, vol. 20 (3), pp. 205–221. PMID: 16340101
    8. Dashtipour K., Tafreshi A., Lee J., Crawley B. Speech disorders in Parkinson’s disease: pathophysiology, medical management and surgical approaches. Neurodegener. Dis. Manag, 2018, vol. 8 (5), pp. 337–338. DOI: 10.2217/nmt-2018-0021
    9. Hartelius L., Svensson P. Speech and swallowing symptoms associated with Parkinson’s disease and multiple sclerosis: a survey. Folia Phoniatr. Logop, 1994, vol. 46 (1), pp. 9–17. DOI: 10.1159/000266286
    10. Vasenina E.E., Levin O.S. Heterogeneity of speech disorders in Parkinson’s disease: possibilities of classification, diagnosis and therapy. Meditsinskiy Sovet, 2020, no. 2, pp. 55–66 (in Russ.). DOI: 10.21518/2079-701X-2020-2-55-66
    11. Duffy J.R. Motor speech disorders: substrates, differential diagnosis and management. mosby. 3rd ed. St. Louis, MO; 2013. 512 p.
    12. Darling-White M., Huber J.E. The impact of expiratory muscle strength training on speech breathing in individuals with Parkinson’s disease: a preliminary study. Am. J. Speech Lang. Pathol, 2017, vol. 26 (4), pp. 1159–1166. DOI: 10.1044/2017_AJSLP-16-0132
    13. Pokhabov D.V., Nesterova Yu.V., Abramov V.G. Method of speech rehabilitation for Parkinson’s disease. Nevrologicheskiy zhurnal, 2014, no. 5, pp. 29–31 (in Russ.).
    14. Miller N. Communication changes in Parkinson’s disease. Pract Neurol, 2017, vol. 17 (4), pp. 266–274. DOI: 10.1136/practneurol-2017-001635
    15. Rizzo G., Copetti M. et al. Accuracy of clinical diagnosis of Parkinson disease: a systematic review and meta-analysis. Neurology, 2016, vol. 86 (6), pp. 566–576. DOI: 10.1212/WNL.0000000000002350
    16. Jellinger K.A., Logroscino G., Rizzo G., Copetti M., Arcuti S., Martino D., Fontana A. Accuracy of clinical diagnosis of Parkinson disease: a systematic review and meta-analysis. Neurology, 2016, vol. 87 (2), pp. 237–238. DOI: 10.1212/WNL.0000000000002876
    17. Hustad E., Skogholt A.H. et al. The accuracy of the clinical diagnosis of Parkinson disease. The HUNT study. J Neurol, 2018, vol. 265 (9), pp. 2120–2124. DOI: 10.1007/s00415-018-8969-6
    18. Adler C.H., Beach T.G., Zhang N., Shill H.A., Driver-Dunckley E., Mehta S.H. et al. Clinical diagnostic accuracy of early/advanced Parkinson disease: an updated clinicopathologic study. Neurol. Clin. Pract, 2021, vol. 11 (4), pp. e414-e421. DOI: 10.1212/CPJ.0000000000001016.
    19. Postuma R.B., Poewe W., Litvan I., Lewis S., Lang A.E., G. Halliday et al. Validation of the MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord, 2018, vol. 33 (10), pp. 1601–1608. DOI: 10.1002/mds.27362
    20. Rusz J., Cmejla R., Ruzickova H., Ruzicka E. Quantitative acoustic measurements for characterization of speech and voice disorders in early untreated Parkinson’s disease. J. Acoust. Soc. Am, 2011, vol. 129 (1), pp. 350–367. DOI: 10.1121/1.3514381
    21. Vaiciukynas E., Verikas A., Gelzinis A., Bacauskiene M. Detecting Parkinson’s disease from sustained phonation and speech signals. PLoS ONE, 2017, vol. 12 (10), pp. 1–16. DOI: 10.1371/journal.pone.0185613
    22. Yang S., Wang F., Yang L., Xu F., Luo M., Chen X. et al. The physical significance of acoustic parameters and its clinical significance of dysarthria in Parkinson’s disease. Sci. Rep, 2020, vol. 10 (1), 11776. DOI: 10.1038/s41598-020-68754-0
    23. Gillivan-Murphy P., Miller N., Carding P. Voice tremor in Parkinson’s disease: an acoustic study. J. Voice, 2019, vol. 33 (4), pp. 526–535. doi: 10.1016/j.jvoice.2017.12.010
    24. Chaudhuri K., Martinez-Martin P., Schapira A.H.V., Stocchi F., Sethi K., Odin P. et al. International multicenter pilot study of the first comprehensive self-completed nonmotor symptoms questionnaire for Parkinson’s disease: the NMSQuest study. Mov. Disord, 2006, vol. 21 (7), pp. 916–923. DOI: 10.1002/mds.20844
    25. Jacobson B., Johnson A. et al. The voice handicap index (VHI): development and validation. Am. J. Speech-Language Pathol., 1997, vol. 6 (3), pp. 66–70. https://doi.org/10.1044/1058-0360.0603.66
    26. Ma A., Lau K.K., Thyagarajan D. Voice changes in Parkinson’s disease: What are they telling us? J. Clin. Neurosci, 2020, vol. 72, pp. 1–7. doi: 10.1016/j.jocn.2019.12.029.
    27. Dashtipour K., Tafreshi A. et al. Speech disorders in Parkinson’s disease: pathophysiology, medical management and surgical approaches. Neurodegener. Dis. Manag, 2018, vol. 8 (5), pp. 337–348. DOI: 10.2217/nmt-2018-0021
    28. Muñoz-Vigueras N., Prados-Román E. et al. Speech and language therapy treatment on hypokinetic dysarthria in Parkinson disease: Systematic review and meta-analysis. Clin. Rehabil, 2021, vol. 35 (5), pp. 639–655. DOI: 10.1177/0269215520976267
    29. Thijs Z., Watts C.R. Perceptual characterization of voice quality in nonadvanced stages of Parkinson’s disease. J. Voice, 2022, vol. 36 (2), pp. 293.e11-e18. DOI: 10.1016/j.jvoice.2020.05.007
    30. Pah N.D., Motin M.A., Kumar D.K. Phonemes based detection of Parkinson’s disease for telehealth applications. Sci. Rep, 2022, vol. 12 (1), p. 9687. DOI: 10.1038/s41598-022-13865-z
    31. Hemmerling D., Wojcik-Pedziwiatr M. Prediction and estimation of Parkinson’s disease severity based on voice signal. J. Voice, 2022, vol. 36 (3), pp. 439.e9-e20. DOI: 10.1016/j.jvoice.2020.06.004

    Метки: 2024, D.M. KHASANOVA, G.R. ILINA, I.A. KHASANOV, Practical medicine part 22 №1. 2024, Z.A. ZALYALOVA, Z.R. ALIMETOVA, Е.A. GUBAREVA, О.L. PLESHKOVA, Т.A. KUTNIKOVA

    ‹ Platelet indices and their prognostic significance in patients with chronic hepatitis C Health status and quality of life of children with chronic diarrhea ›
    • rus Версия на русском языке


      usa English version site


      Find loupe

      

    • PARTNERS

      пов  logonew
    «Для
    Practical medicine. Scientific and practical reviewed medical journal
    All rights reserved ©