Using artificial intelligence for diagnosing Parkinson’s disease
Z.A. ZALYALOVA1, 2, I.A. KHASANOV3, D.M. KHASANOVA1, G.R. ILINA1, Т.A. KUTNIKOVA4, О.L. PLESHKOVA5, Z.R. ALIMETOVA2, Е.A. GUBAREVA6
1Republic Consultative and Diagnostics Center for Extrapyramidal Pathology, Kazan
2Kazan State Medical University, Kazan
3BRAINPHONE Digital Solutions for Diagnostics of Brain Disorders LLC, Kazan
4Orenburg Regional Clinical Neuropsychiatric Hospital of War Veterans, Center for Extrapyramidal Pathology, Orenburg
5AS Neurology LLC, Izhevsk
6Tolyatti City Clinical Hospital No. 5, Tolyatti
Contact details:
Khasanova D.M. – Ph. D. (medicine), neurologist
Address: 5 Isaev St., Kazan, Russian Federation, 420039, tel.: +7-905-039-88-95, e-mail: diana.khasanova1987@gmail.com
In the article we discuss the features of Parkinson’s disease (PD) diagnostics: the generally accepted clinical criteria, their sensitivity and specificity compared to modern diagnostic methods like a voice diagnostic service for PD based on artificial intelligence technologies.
The purpose was to clinically test a prototype of a voice-based PD diagnostic service developed as part of the BRAINPHONE project.
Material and methods. 100 patients (a balanced sample) who applied to the Republic Consultative and Diagnostic Center for Extrapyramidal Pathology (Kazan) were included in the unselected cohort clinical study. All patients were first examined by two experienced specialists in Parkinson’s disease and then by a trained neural network. The neural network conclusions options were «Parkinson’s disease cannot be excluded» or «No signs of Parkinson’s disease» (decision threshold 0.5).
Results. As a result of testing the service, the following data were obtained: sensitivity — 80%, specificity — 92%. Compared with the generally accepted clinical criteria for diagnosing PD, voice diagnosis using a trained neural network developed within the BRAINPHONE project in this study showed comparable results in sensitivity and better results in specificity.
Key words: Parkinson’s disease, diagnostics, artificial intelligence, voice diagnostics, parkinsonism, voice.
REFERENCES
- Zalyalova Z.A., Khasanova D.M. Evolution of predictors of early Parkinson’s disease. Byulleten’ Natsional’nogo obshchestva po izucheniyu bolezni Parkinsona i rasstroystv dvizheniy, 2022, no. 2, pp. 72–75 (in Russ.). DOI: 10.24412/2226-079X-2022-12438
- Katunina E.A., Zalyalova Z.A., Pokhabov D.V. et al. Parkinson’s disease. Focus on the early stages. Nevrologiya, neyropsikhiatriya, psikhosomatika, 2023, vol. 15, no. 3, pp. 95–103 (in Russ.).
- Postuma R.B., Berg D., Stern M. et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord, 2015, vol. 30 (12), pp. 1591–601. DOI: 10.1002/mds.26424
- Hughes A.J., Daniel S.E., Kilford L., Lees A.J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease. A clinico-pathological study of 100 cases. JNNP, 1992, vol. 55 (3), pp. 181–184. DOI: 10.1136/jnnp.55.3.181
- https://www.movementdisorders.org/MDS/News/Newsroom/Position-Papers/MDS-Position-Diagnosis-of-PD.htm (accessed on: 26.12.2023).
- Ministerstvo zdravookhraneniya Rossiyskoy Federatsii. Klinicheskie rekomendatsii “Bolezn’ Parkinsona, vtorichnyy parkinsonizm i drugie zabolevaniya, proyavlyayushchiesya sindromom parkinsonizma”, 2022 [Ministry of Health of the Russian Federation. Clinical recommendations “Parkinson’s disease, secondary parkinsonism and other diseases manifested by parkinsonism syndrome”, 2022], available at: https://cr.minzdrav.gov.ru/recomend/716_1 (accessed on: 26.12.2023).
- Trail M., Fox C., Ramig L.O., Sapir Sh., Howard J., Lai E.C. Speech treatment for Parkinson’s disease. NeuroRehabilitation, 2005, vol. 20 (3), pp. 205–221. PMID: 16340101
- Dashtipour K., Tafreshi A., Lee J., Crawley B. Speech disorders in Parkinson’s disease: pathophysiology, medical management and surgical approaches. Neurodegener. Dis. Manag, 2018, vol. 8 (5), pp. 337–338. DOI: 10.2217/nmt-2018-0021
- Hartelius L., Svensson P. Speech and swallowing symptoms associated with Parkinson’s disease and multiple sclerosis: a survey. Folia Phoniatr. Logop, 1994, vol. 46 (1), pp. 9–17. DOI: 10.1159/000266286
- Vasenina E.E., Levin O.S. Heterogeneity of speech disorders in Parkinson’s disease: possibilities of classification, diagnosis and therapy. Meditsinskiy Sovet, 2020, no. 2, pp. 55–66 (in Russ.). DOI: 10.21518/2079-701X-2020-2-55-66
- Duffy J.R. Motor speech disorders: substrates, differential diagnosis and management. mosby. 3rd ed. St. Louis, MO; 2013. 512 p.
- Darling-White M., Huber J.E. The impact of expiratory muscle strength training on speech breathing in individuals with Parkinson’s disease: a preliminary study. Am. J. Speech Lang. Pathol, 2017, vol. 26 (4), pp. 1159–1166. DOI: 10.1044/2017_AJSLP-16-0132
- Pokhabov D.V., Nesterova Yu.V., Abramov V.G. Method of speech rehabilitation for Parkinson’s disease. Nevrologicheskiy zhurnal, 2014, no. 5, pp. 29–31 (in Russ.).
- Miller N. Communication changes in Parkinson’s disease. Pract Neurol, 2017, vol. 17 (4), pp. 266–274. DOI: 10.1136/practneurol-2017-001635
- Rizzo G., Copetti M. et al. Accuracy of clinical diagnosis of Parkinson disease: a systematic review and meta-analysis. Neurology, 2016, vol. 86 (6), pp. 566–576. DOI: 10.1212/WNL.0000000000002350
- Jellinger K.A., Logroscino G., Rizzo G., Copetti M., Arcuti S., Martino D., Fontana A. Accuracy of clinical diagnosis of Parkinson disease: a systematic review and meta-analysis. Neurology, 2016, vol. 87 (2), pp. 237–238. DOI: 10.1212/WNL.0000000000002876
- Hustad E., Skogholt A.H. et al. The accuracy of the clinical diagnosis of Parkinson disease. The HUNT study. J Neurol, 2018, vol. 265 (9), pp. 2120–2124. DOI: 10.1007/s00415-018-8969-6
- Adler C.H., Beach T.G., Zhang N., Shill H.A., Driver-Dunckley E., Mehta S.H. et al. Clinical diagnostic accuracy of early/advanced Parkinson disease: an updated clinicopathologic study. Neurol. Clin. Pract, 2021, vol. 11 (4), pp. e414-e421. DOI: 10.1212/CPJ.0000000000001016.
- Postuma R.B., Poewe W., Litvan I., Lewis S., Lang A.E., G. Halliday et al. Validation of the MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord, 2018, vol. 33 (10), pp. 1601–1608. DOI: 10.1002/mds.27362
- Rusz J., Cmejla R., Ruzickova H., Ruzicka E. Quantitative acoustic measurements for characterization of speech and voice disorders in early untreated Parkinson’s disease. J. Acoust. Soc. Am, 2011, vol. 129 (1), pp. 350–367. DOI: 10.1121/1.3514381
- Vaiciukynas E., Verikas A., Gelzinis A., Bacauskiene M. Detecting Parkinson’s disease from sustained phonation and speech signals. PLoS ONE, 2017, vol. 12 (10), pp. 1–16. DOI: 10.1371/journal.pone.0185613
- Yang S., Wang F., Yang L., Xu F., Luo M., Chen X. et al. The physical significance of acoustic parameters and its clinical significance of dysarthria in Parkinson’s disease. Sci. Rep, 2020, vol. 10 (1), 11776. DOI: 10.1038/s41598-020-68754-0
- Gillivan-Murphy P., Miller N., Carding P. Voice tremor in Parkinson’s disease: an acoustic study. J. Voice, 2019, vol. 33 (4), pp. 526–535. doi: 10.1016/j.jvoice.2017.12.010
- Chaudhuri K., Martinez-Martin P., Schapira A.H.V., Stocchi F., Sethi K., Odin P. et al. International multicenter pilot study of the first comprehensive self-completed nonmotor symptoms questionnaire for Parkinson’s disease: the NMSQuest study. Mov. Disord, 2006, vol. 21 (7), pp. 916–923. DOI: 10.1002/mds.20844
- Jacobson B., Johnson A. et al. The voice handicap index (VHI): development and validation. Am. J. Speech-Language Pathol., 1997, vol. 6 (3), pp. 66–70. https://doi.org/10.1044/1058-0360.0603.66
- Ma A., Lau K.K., Thyagarajan D. Voice changes in Parkinson’s disease: What are they telling us? J. Clin. Neurosci, 2020, vol. 72, pp. 1–7. doi: 10.1016/j.jocn.2019.12.029.
- Dashtipour K., Tafreshi A. et al. Speech disorders in Parkinson’s disease: pathophysiology, medical management and surgical approaches. Neurodegener. Dis. Manag, 2018, vol. 8 (5), pp. 337–348. DOI: 10.2217/nmt-2018-0021
- Muñoz-Vigueras N., Prados-Román E. et al. Speech and language therapy treatment on hypokinetic dysarthria in Parkinson disease: Systematic review and meta-analysis. Clin. Rehabil, 2021, vol. 35 (5), pp. 639–655. DOI: 10.1177/0269215520976267
- Thijs Z., Watts C.R. Perceptual characterization of voice quality in nonadvanced stages of Parkinson’s disease. J. Voice, 2022, vol. 36 (2), pp. 293.e11-e18. DOI: 10.1016/j.jvoice.2020.05.007
- Pah N.D., Motin M.A., Kumar D.K. Phonemes based detection of Parkinson’s disease for telehealth applications. Sci. Rep, 2022, vol. 12 (1), p. 9687. DOI: 10.1038/s41598-022-13865-z
- Hemmerling D., Wojcik-Pedziwiatr M. Prediction and estimation of Parkinson’s disease severity based on voice signal. J. Voice, 2022, vol. 36 (3), pp. 439.e9-e20. DOI: 10.1016/j.jvoice.2020.06.004