Treatment of peripheral arterial diseases using progenitor cells
M.V. PLOTNIKOV1,2, A.V. MAKSIMOV1,2
1Republican Clinical Hospital of the Ministry of Healthcare of the Republic of Tatarstan, 138 Orenburgskiy Trakt, Kazan, Russian Federation 420064
2Kazan State Medical Academy, 11 Mushtari St., Kazan, Republic of Tatarstan 420012
Plotnikov M.V. — Assistant Lecturer of the Department of Cardiology, Endovascular and Cardiovascular Surgery, vascular surgeon of the Vascular Surgery Department № 1, tel. (843) 237-32-76, e-mail: plotnikov_mv@bk.ru1,2
Maksimov A.V. — Cand. Med. Sc., Associate Professor of the Department of Cardiology, Endovascular and Cardiovascular Surgery, Head of the Vascular Surgery Department № 1 of the Republic Clinical Hospital, tel. (843) 237-32-76, e-mail: maks.av@mail.ru1,2
Peripheral arterial diseases (PAD) is a highly prevalent atherosclerotic syndrome associated with significant morbidity and mortality. Standard treatment for PAD is surgical or endovascular revascularization. However, up to 30% of patients are not candidates for such interventions, due to high operative risk or unfavorable vascular involvement. Bone-marrow derived stem and progenitor cells have been identified as a potential new therapeutic option to induce angiogenesis. These findings prompted clinical researchers to explore the feasibility of cell therapies in patients with peripheral and coronary artery disease in several small trials. Current literature is supportive of intramuscular bone marrow cell administration as a relatively safe, feasible, and possibly effective therapy for patients with PAD who are not subjects for conventional revascularization.
Key words: PAD, CLI, cell therapy, progenitor cells.
REFERENCES
1. Selvin E., Erlinger T.P. Prevalence of and risk factors for peripheral arterial disease in the United States: results from the National Health and Nutrition Examination Survey, 1999-2000. Circulation, 2004, vol. 10, 110 (6), rr. 738-43.
2. Fowkes G.R., Rudan D., Rudan I., Aboyans V. et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. The Lancet, 2013, vol. 382, pp. 1329-1340.
3. Aquino R., Johnnides Ch., Makaroun M. et al. Natural history of claudication: Long-term serial follow-up study of 1244 claudicants. J Vasc Surg., 2001, vol. 34, rr. 962-70.
4. Natsional’nye rekomendatsii po vedeniyu patsientov s sosudistoy arterial’noy patologiey [National guidelines for management of patients with vascular arterial pathology]. Moscow, 2011. 175 p.
5. Norgren L. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). Eur. J. Vasc. Endovasc. Surg., 2007, vol. 45, pp. 5-67.
6. Kashyap V.S., M.L. Pavkov, J.F. Bena et al. The management of severe aortoiliac occlusive disease: endovascular therapy rivals open reconstruction. J. Vasc. Surg., 2008, vol. 48, pp. 1451-1457.
7. Chiu K.W., Davies R.S., P.G. Nightingale et al. Review of direct anatomical open surgical management of atherosclerotic aorto-iliac occlusive disease. Eur. J. Vasc. Endovasc. Surg., 2010, vol. 39, pp. 460-471.
8. Loh S.A., Howell B.S., Rockman C.B. et al. Mid- and long-term results of the treatment of infrainguinal arterial occlusive disease with precuffed expanded polytetrafluoroethylene grafts compared with vein grafts. Ann. Vasc. Surg., 2013, vol. 27 (2), pp. 208-217.
9. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med., 1971, Vol. 285, rr. 1182-1186.
10. Forsythe J.A., Jiang B.H., Iyer N.V. et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol., 1996, vol. 16 (9), pp. 4604-4613.
11. Plum J., Yöder M.C. et al. Endothelial progenitor cells: identity defined? J. Cell. Mol. Med., 2009, vol. 3 (1), pp. 87-102.
12. Rohde E., Malischnik C., Thaler D. et al. Blood monocytes mimic endothelial progenitor cells. Stem. Cells, 2006, vol. 24 (2), pp. 357-367.
13. Wahlberg Eric. Angiogenesis and arteriogenesis in limb ischemia. J. Vasc. Surg., 2006, vol. 38 (1), pp. 198-203.
14. van Royen N., Piek J.J., Buschmann I., Hoefer I. et al. Stimulation of arteriogenesis; a new concept for the treatment of arterial occlusive disease. Cardiovasc Res., 2001, vol. 49, rr. 543-553.
15. Asahara T., Murohara T., Sullivan A., Silver M. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997, vol. 275, rr. 964-967.
16. Takahashi T., Kalka C., Masuda H., Chen D. et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med., 1999, vol. 5, rr. 434-438.
17. Takagi Y., Omura T., Yoshiyama M., Matsumoto R. et al. Granulocyte-colony stimulating factor augments neovascularization induced by bone marrow transplantation in rat hindlimb ischemia. J Pharmacol Sci., 2005, Vol. 99, rr. 45-51.
18. Zhang H., Zhang N., Li M., Feng H., Jin W., Zhao H. et al. Therapeutic angiogenesis of bone marrow mononuclear cells (MNCs) and peripheral blood MNCs: transplantation for ischemic hindlimb. Ann Vasc Surg., 2008, vol. 22, rr. 238-247.
19. Tateishi Yuyama E. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone marrow cells: a pilot study and a randomized controlled trial. Lancet., 2002., vol. 360, pp. 427-435.
20. Esato K. Neovascularization induced by autologous bone marrow cell implantation in peripheral arterial disease. Cell. Transplant., 2002., vol. 11 (8)., P. 747-752.
21. Khorev N.G., Elykomov V.A., Zaloznyy D.A. Therapeutic angiogenesis in cell treatment of peripheral arterial disease. Angiologiya i sosudistaya khirurgiya, 2011, vol. 17, no. 2, pp. 36-44 (in Russ.).
22. Takakura N., Watanabe T., Suenobu S. et al. A role for hematopoietic stem cells in promoting angiogenesis. Cell., 2000, vol. 102 (2), pp. 199-209.
23. Matsui K., Murakami Y., Yoshioka T. et al. Therapeutic angiogenesis by transplantation of autologous bone marrow and peripheral blood mononuclear cells in patients with peripheral arterial disease. Int. J. Angiol., 2003, vol. 12 (3), pp. 155-161.
24. Kudo A., Nishibe T., Nishibe M., Yasuda K. Autologous transplantation of peripheral blood endothelial progenitor cells (CD34+) for therapeutic angiogenesis in patients with critical limb ischemia. Int. Angiol., 2003, vol. 22, pp. 344-348.
25. Huang P.P., Li S.Z., Han M.Z. et al. Autologous transplantation of peripheral blood stem cells as an effective therapeutic approach for severe arteriosclerosis obliterans of lower extremities. Thromb. Haemost., 2004, vol. 91 (3), pp. 606-609.
26. Cho H.J., Kim H.S., Lee M.M. Mobilized endothelial progenitor cells by granulocyte-macrophage colony stimulating factor accelerate reendothelialization and reduce vascular inflammation after intravascular radiation. Circ., 2003, vol. 108 (23), P. 2918-2925.
27. Kim D.I., Kim M.J., Joh J.H. Angiogenesis facilitated by autologous whole bone marrow stem cell transplantation for Buerger’s disease. Stem. Cells, 2006, vol. 24 (5), pp. 1194-1200.
28. Huang P.P., Yang X.F., Li S.Z. Randomised comparison of G-CSF-mobilized peripheral blood mononuclear cells versus bone marrow-mononuclear cells for the treatment of patients with lower limb arteriosclerosis obliterans. Thromb Haemost., 2007, vol. 98 (6), pp. 1335-1342.
29. Amann B., Luedemann C., Ratei R., Schmidt-Lucke J.A. Autologous bone marrow cell transplantation increases leg perfusion and reduces amputations in patients with advanced critical limb ischemia due to peripheral artery disease. Cell Transplant., 2009., vol. 18 (3), pp371-380.
30. Fadini G.P., Agostini C., Avogaro A. Autologous stem cell therapy for peripheral arterial disease meta-analysis and systematic review of the literature. Atherosclerosis, 2010, vol. 209, rr. 10-17.
31. Onodera R., Teramukai S., Tanaka S. Bone marrow mononuclear cells versus G-CSF-mobilized peripheral blood mononuclear cells for treatment of lower limb ASO: pooled analysis for long-term prognosis. Bone. Marrow. Transplant., 2011, vol. (2), pp. 278-284.
32. Barbash I.M. Sistemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium. Feasibility, cell migration, and body distribution. Circulation, 2003, vol. 108, pp. 863-868.
33. Van Tongeren R.B., Hamming J.F., Fibbe W.E. Intramuscular or combined intramuscular/intra-arterial administration of bone marrow mononuclear cells: a clinical trial in patients with advanced limb ischemia. J. Cardiovasc. Surg (Torino), 2008, vol. 49 (1), pp. 51-58.
34. Amann B., Lüdemann C., Ratei R., Schmidt-Lucke J.A. Autologous bone-marrow stem-cell transplantation for induction of arteriogenesis for limb salvage in critical limb ischaemia. Zentralbl Chir., 2009, vol. 134 (4), pp. 298-304.
35. Burns P., Lima E., Bradbury A.W. What constitutes best medical therapy for peripheral arterial disease? Eur. J. Endovasc. Surg., 2002, vol. 24 (1), pp. 6-12.
36. Matoba S., Tatsumi T., Murohara T., Imaizumi T., Katsuda Y., Ito M. et al. Long-term clinical outcome after intramuscular implantation of bone marrow mononuclear cells (Therapeutic Angiogenesis by Cell Transplantation [TACT] trial) in patients with chronic limb ischemia. Am Heart J., 2008, vol. 156, rr. 1010-1018.