The role of the brain lymphatic system in the homeostasis of the central nervous system
A.R. КLYUCHAROVA1, S.А. АRKHIPOVA2
1Republican Clinical Hospital of the MH of RT, 138 Orenburgskiy Trakt, Kazan, Russian Federation, 420064
2Kazan State Medical University, 49 Butlerov Str., Kazan, Russian Federation, 420012
Klyucharova A.R. ― Cand. Med. Sc., allergologist and immunologist, Assistant of the Department of Clinical Immunology and Allergology, tel. +7-917-282-44-14, e-mail: aliluia@yandex.ru
Arkhipova S.A. ― student, tel. +7-950-310-46-43, e-mail: sophia.sun@rambler.ru
This article provides information about the structural features of the brain lymphatic system. The main functions of T-lymphocytes, macrophages and dendritic cells оf meningeal system are named. The influence of cytokines, produced by cells of the immune system, on the work of the brain, as well as their possible impact on the formation of human cognitive disorders and depression, is described. The results of efficient therapy of depressive disorders by antibodies to TNF-a are given. The study of the functions of the brain lymphatic system allows us to find new mechanisms of the pathogenesis of a number of neurodegenerative diseases.
Key words: brain, lymphatic system, T-lymphocytes, cytokines.
REFERENCES
1. Materialy lektsiy Vserossiyskoy shkoly «Aktual’nye problemy sovremennoy fiziologii» [Proceedings of the school lecture “Actual problems of modern physiology”]. Kazan, 1-4 february, 2016.
2. Gayton A.K., Kholl E.D. Meditsinskaya fiziologiya [Medical Physiology]. Moscow: Logosfera, 2008. Pp. 209-211.
3. Yarilin A.A. Immunologiya [Immunology]. Moscow: GEOTAR-Media, 2010. P. 381
4. Netter F.H., Craig J.A., Perkins J., Hansen J.T., Koeppen B.M. Atlas of Neuroanatomy and Neurophysiology, Selections from the Netter Collection of Medical Illustrations, Icon Custom Communications, 2002. R. 98.
5. Lee J.C. Evolution in the concept of the bloodbrainbarrier phenomen. Progress in neuropathology. Verlag Grune und Stratton, 1971. Vol. 1. Rr. 84-145.
6. Andreeva I.A., Platonov T.A. Participation of the immune system in the pathogenesis and pharmacotherapy of brain edema-swelling. Vestnik novykh meditsinskikh tekhnologiy, 2006, vol. XIII, no. 4, pp. 52-55 (in Russ.).
7. Malashkhiya Yu.A., Nadarsishvili Z.G., Malashkhiya N.Yu., Malashkhiya V.Yu. The brain as the organ of immunity. Zhurnal nevropatologii i psikhiatrii, 1999, no. 9, pp. 62-65 (in Russ.).
8. Louveau A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature, 2015, 523, pp. 337-341.
9. Foldi M. et al. Über Wirkungen der Unterbindung der Lymphgefasse und Lymphknoten des Halses auf das Zentral-nervensystem im Tierversuch. Z. Ges. Exp. Med, 1963, 137, pp. 483-510. (in German)
10. Kipnis, J. et al. Pro-cognitive properties of T cells. Nat. Rev. Immunol, 2012, 12, pp. 663-669.
11. Johnston M. et al. Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebro-spinal Fluid Res, 2004, 1, 2.
12. Johnston M. et al. Subarachnoid injection of Microfil reveals connections between cerebrospinal fluid and nasal lym-phatics in the non-human primate. Neuropathol. Appl. Neurobiol, 2005, 31, pp. 632-640.
13. Nagra G. et al. Quantification of cerebrospinal fluid trans-port across the cribriform plate into lymphatics in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol, 2006, 291, pp. 1383-1389.
14. Zhang, E.T. et al. Directional and compartmentalised drainage of interstitial fluid and cerebrospinal fluid from the rat brain. Acta Neuropathol, 1992, 83, pp. 233-239.
15. Aspelund A. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med, 2015, 212, pp. 991-999.
16. Louveau A., Harris T.H. and Kipnis J. Revisiting the Mechanisms of CNS Immune Privilege. Trends in Immunology, October 2015, vol. 36, no. 10, pp. 569-575.
17. Ohtori S., Takahashi K., Moriya H., Myers.R. TNF-alpha and TNF-alpha receptor type 1 upregulation in glia and neuron peripheral nerve injury: study in murine DRG and spinal cord. Spine, 2004, 29, pp. 1082-1088.
18. Zhang N., Oppenheim J.J. Crosstalk between chemokines and neuronal receptors bridges immune and nervous systems. J. Leukoc. Biol, 2005, 78, pp. 1210-1214.
19. Moalem G., Gdalyahu A., Shani Y. et al. Production of neurotrophins by activated T cells: implications for neuroprotective autoimmunity. J. Autoimmun, 2000, 15, pp. 331-345.
20. Konsman J.P., Parnet P., Dantzer R. Cytokine-induced sickness behaviour: mechanisms and implications. Trends Neurosci, 2002, 25, pp. 154-159.
21. Dantzer R., O’Connor J.C., Freund G.G. et al. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci, 2008, 9, pp. 46-56.
22. McCusker R.H, Kelley K.W. Immune-neural connections: how the immune system’s response to infectious agents influences behavior. J. Exp. Biol, 2013, 216, pp. 84-98.
23. Del Zoppo G.J. Stroke and neurovascular protection. N. Engl. J. Med, 2006, vol. 354, no. 6, pp. 553-555.
24. Giaume C. From a glial syncytium to a more restricted and specific glial networking. J. Physiol. Paris, 2012, vol. 106, no. 1-2, pp. 34-39.
25. Whitton P.S. Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br. J. Pharmacol, 2007, vol. 150, no. 8, pp. 963-976.
26. Malinovskaya N.A. Rol’ NAD+zavisimykh mekhanizmov v regulyatsii neyron-glial’nykh vzaimodeystviy pri ishemii golovnogo mozga i neyrodegeneratsii: avtoreferat [The role of the NAD + dependent mechanisms in the regulation of neuron-glia interactions in cerebral ischemia and neurodegeneration: abstract]. Kemerovo, 2014. 24 p.
27. Gibney S.M., Drexhage H.A. Evidence for a dysregulated immune system in the etiology of psychiatric disorders. J. Neuroimmune Pharmacol, 2013, 8, pp. 900-920.
28. Onore C., Careaga M., Ashwood P. The role of immune dysfunction in the pathophysiology of autism. Brain Behav. Immun, 2012, 26, rr. 383-92.
29. Altamura A.C., Pozzoli S., Fiorentini A., Dell’osso B. Neurodevelopment and inflammatory patterns in schizophrenia in relation to pathophysiology. Prog. Neuropsychopharmacol Biol. Psychiatry, 2013, 42, rr. 63-70.
30. Felger J.C, Lotrich F.E. Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience, 2013, 246C, rr. 199-229.
31. de Theije C. et al. Pathways underlying the gut-to-brain connection in autism spectrum disorders as future targets for disease management. Eur. J. Pharmacol, 2011, 668, rr. 70-80.
32. Kraneveld D., Caroline G.M. de Theije, Floor van Heesch and all. The Neuro-Immune Axis: Prospect for Novel Treatments for Mental Disorders. Basic & Clinical Pharmacology & Toxicology, 2014, 114, rr. 128-136.
33. Howren M.B, Lamkin D.M, Suls J. Associations of depression with C-reactive protein, IL-1 and IL-6: a meta-analysis. Psychosom. Med, 2009, 71, rr. 171-186.
34. Dowlati Y., Herrmann N., Swardfager W. et al. A meta-analysis of cytokines in major depression. Biol. Psychiatry, 2010, 67, rr. 446-57.
35. Albert P.R., Benkelfat C., Desearries L. The neurobiology of depression-revisiting the serotonin hypothesis. I. Cellular and molecular mechanisms. Philos. Trans. R Soc Lond B Biol. Sei, 2012, rr. 2378-2381.
36. Hannestad J., DellaGioia N., Bloch M. The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology, 2011, 36, rr. 2452-2459.
37. Lee K.M., Kim Y.K. The role of IL-12 and TGF-beta-1 in the pathophysiology of major depressive disorder. Int. Immunopharmacol, 2006, 6, rr. 1298-304.
38. Sutcigil L., Oktenli C., Musabak U. et al. Pro- and anti-inflammatory cytokine balance in major depression: effect of sertraline therapy. Clin. Dev. Immunol, 2007, rr. 76396-76402.
39. Raison C.L., Retherford R.E., Woolwine B.J., Shuo C. et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry, 2013, 70, pp. 31-41.
40. Iosif R.E., Ekdahl C.T., Ahlenius H. et al. Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J. Neurosci, 2006, 26, rr. 9703-9712.
41. Gomazkov O.A. Neyrogenez kak adaptivnaya funktsiya mozga [Neurogenesis as the adaptive function of the brain]. Moscow, 2014. Pp. 14-15, 30.