Polymer gels and their application in ophthalmology
M.M. BIKBOV1, I.I. KHUSNITDINOV1, N.N. SIGAEVA2, R.R. VILDANOVA2
1Ufa Eye Research Institute of Academy of Sciences of the Republic of Bashkortostan, 90 Pushkin Str., Ufa, Russian Federation, 450008
2Institute of Organic Chemistry of Ufa Scientific Centre of the Russian Academy of Sciences, 71 Oktyabr’skiy Prospect, Ufa, Russian Federation, 450054
Bikbov M.M. – D. Med. Sc., Professor, Director, tel. (347) 272-37-75 e-mail: niipriem@yandex.ru1
Khusnitdinov I.I. – Cand. Med. Sc., Head of the 2nd Microsurgical Department, e-mail: husnitdinov.ilnu@mail.ru1
Sigaeva N.N. – D. Chem. Sc., Professor, Leading Researcher of the Laboratory of Stereoregular Polymers, e-mail: gip@anrb.ru
Vildanova R.R. – Cand. Chem. Sc., Junior Researcher of the Laboratory of Stereoregular Polymers, e-mail: regina777@list.ru
The article discusses the results of studies on the use of hydrogels in ophthalmology. The examples describe the use of hydrogels based on synthetic polymers, biopolymers, and hybrid gels based on polysaccharides and synthetic polymers. It is stated that the use of hydrogels promotes prolongation of drug action, but the use of both synthetic and biopolymers, besides the obvious advantages, in some cases has disadvantages. One of the disadvantages of hydrogels based on synthetic polymers is that the probability of their rejection of the living body tissues is high due to the lack of conditions for differentiation, cell proliferation and tissue regeneration. This disadvantage is absent in hydrogels obtained from natural polymers. Due to their biocompatibility, flexibility, variety of composition and physical characteristics, hydrogels per se or in combination with drugs are used in many areas of medicine, including ophthalmology.
Key words: ophthalmology, biopolymers, drainage, hydrogels.
REFERENCES
- Egorov E.A. Oftal’mofarmakologiya: rukovodstvo dlya vrachey []. Moscow: GEOTAR-Media, 2009. 592 p.
- Kimura H., Ogura Y. Biodegradable polymers for ocular drug delivery. Ophthalmologica, 2001, no. 215, pp. 143-155.
- Glaukoma. Natsional’noe rukovodstvo, pod red. Egorov E.A. [Glaucoma. National leadership. Ed. by Egorov E.A]. Moscow: GEOTAR-Media, 2013. 824 p.
- Kushwaha S.K.S., Saxena P., Rai A.K. Stimuli sensitive hydrogels for ophthalmic drug delivery: A review. Int. J. Pharm. Investig, 2012, no. 2, pp. 54-60.
- Lavik E., Kuehn M.H., Kwon Y.H. Novel drug delivery systems for glaucoma. Eye, 2011, no. 25, pp. 578-586.
- Rogovina L.Z., Vasil’ev V.G. The variety of polymer gels and the main factors that determine the properties of the gels themselves and solid polymers obtained from them . Vysokomolekulyarnye soedineniya. Serii A i B, 2010,vol. 52, no. 11, pp. 1975-1987 (in Russ.).
- Rogovina L.Z., Vasil’ev V.G., Braudo E.E. To the definition of the term «polymer gel». Vysokomolekulyarnye soedineniya. Serii A, B i S, 2008, vol. 50, no. 7, pp. 1397-1406.
- Pavlyuchenko V.N., Ivanchev S.S. Composite polymer hydrogels. Vysokomolekulyarnye soedineniya. Seriya A, 2009, vol. 51, no. 7, pp. 1075-1095.
- Li Y., Rodrigues J., Tomas H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev, 2012, no. 41, pp. 2193-2221.
- Khabarov V.N., Boykov P.Ya., Selyanin M.A. Gialuronovaya kislota: poluchenie, svoystva, primenenie v biologii i meditsine [Hyaluronic acid: production, properties, application in biology and medicine]. Moscow: Prakticheskaya meditsina, 2012. 224 p.
- Bhattarai N., Gunn J., Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev, 2010, no. 62, pp. 83-99.
- Plate N.A., Vasil’ev A.E. Fiziologicheski aktivnye polimery [Physiologically active polymers]. Moscow: Khimiya, 1986. 296 p.
- Anurova M.N., Bakhrushina E.O., Demina N.B. A review of modern gellants in the technology of dosage forms. Khimiko-farmatsevticheskiy zhurnal, 2015, no. 49, pp. 39-46 (in Russ.).
- Srividya B., Cardoza R.M., Amin P.D. Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. J. Control Release, 2001, no. 73, pp. 205-211.
- Plate N.A., Valuev L.I., Sinani V.A. et al. Drenazh dlya lecheniya glaukomy [Drainage for the treatment of glaucoma]. AS SSSR 1312768, 1998.
- Hsiue G.-H., Hsu S.-H., Yang C.-C. et al. Preparation of controlled release ophthalmic drops, for glaucoma theapy using thermosensitive polyisopropilacrylamide. Biomaterials, 2002, no. 23, pp. 457-462.
- Sahiner N., Kravitz D.J., Qadir R. et al. Creation of a Drug–Coated Glaucoma Drainage Device Using Polymer Technology. Arch. Ophthalmol, 2009, no. 127, pp. 448-453.
- Schoenberg E.D., Blake D.A., Swann F.B. et al. Effect of Two Novel Sustained-Release Drug Delivery Systems on Bleb Fibrosis: An In Vivo Glaucoma Drainage Device Study in a Rabbit Model. Transl. Vis. Sci. Technol, 2015, no. 4, p. 4.
- Hiratani H., Alvarez-Lorenzo C. Timolol uptake and release by imprinted soft contact lenses made of N,N-diethylacrylamide and methacrylic acid. J. Control Release, 2002, no. 83, pp. 223-230.
- Schultz C.L., Poling T.R., Mint J.O. A medical device/drug delivery system for treatment of glaucoma. Clin. Exp. Optom, 2009, no. 92, pp. 343-348.
- Agnese T., Bang F., Cech T. et al. Characteristics of the temperature conducive to the gelation of various poloxamers. Farmatsevticheskaya otrasl’, 2013, no. 5, pp. 110-112 (in Russ.).
- Shatova N.A., Moskaleva E.P., Kotelevtseva S.V. et al. Poloxamers as innovative auxiliary substances. Razrabotka i registratsiya lekarstvennykh sredstv, 2013, no. 5, pp. 58-60 (in Russ.).
- Calladine D., Connon C.J. Interaction Of Ophthalmic ‘In-situ Gel-forming’ Hydrogels With Antibiotics And Corneal Epithelial Cells. AARVO Annual Meeting Abstract, 2012, no. 53.
- Xi L., Wang T., Zhao F. et al. Evaluation of an Injectable Thermosensitive Hydrogel As Drug Delivery Implant for Ocular Glaucoma Surgery. PLoS ONE, 2014, no. 9, p. e100632.
- Rauck B.M., Friberg T.R., Mendez C.A.M. et al. Biocompatible reverse thermal gel sustains the release of intravitreal bevacizumab in vivo. IOVS, 2014, no. 55, p. 469.
- Peng R., Qin G., Li X. et al. The PEG-PCL-PEG Hydrogel as an Implanted Ophthalmic Delivery System after Glaucoma Filtration Surgery; a Pilot Study. Med. Hypothesis Discov. Innov. Ophthalmol, 2014, no. 3, pp. 3-8.
- Fu K., Harrell R., Zinski K. et al. A potential approach for decreasing the burst effect of protein from PLGA microspheres. J. Pharm. Sci, 2003, no. 92, pp. 1582-1591.
- Bao W., Zhou J., Luo J. et al. PLGA microspheres with high drug loading and high encapsulation efficiency prepared by a novel solvent evaporation technique. J. Microencapsul, 2006, no. 23, pp. 471-479.
- Bikbov M.M., Khusnitdinov I.I. The results of the use of Ahmed valve in refractory glaucoma surgery. Journal of Current Glaucoma Practice, 2015, no. 9, pp. 86-91.
- Zaydullin I.S., Sigaeva N.N., Aznabaev R.A. Results of morphological study of rabbit eye shells when drainage with mitomycin C is used to treat glaucoma. Morfologicheskie vedomosti, 2009, no. 3, pp. 254-255 (in Russ.).
- Sigaeva N.N., Kolesov S.V., Nazarov P.V. et al. Chemical modification of hyaluronic acid and its application in medicine. Vestnik Bashkirskogo universiteta, 2012, no. 17, pp. 1220-1241 (in Russ.).
- Burdick J.A., Chung C., Jia X. et al. Controlled Degradation and Mechanical Behavior of Photopolymerized Hyaluronic Acid Networks. Biomacromolecules, 2005, no. 6, pp. 386-391.
- Hu X., Lu Q., Sun L. et al. Biomaterials from Ultrasonication–Induced Silk Fibroin — Hyaluronic Acid Hydrogels. Biomacromolecules, 2010, no. 11, pp. 3178-3188.
- Zhang L.-M., Wu C.-X., Huang J.-Y. et al. Synthesis and characterization of a degradable composite agarose/HA hydrogel. Carbohydr. Polym, 2012, no. 88, pp. 1445-1452.
- Larsen N.E., Balazs E.A. Drug delivery systems using hyaluronan and its derivatives. Adv. Drug Delivery Rev, 1991, no. 7, pp. 279-293.
- Kyyronen K., Hume L.R, Benedetti L. et al. Methylprednisolone esters of hyaluronic acid in ophthalmic drug delivery: in vitro and in vivo release studies. Int. J. Pharm, 1992, no. 80, pp. 161-169.
- Hume L.R., Lee H.K, Benedetti L. et al. Ocular sustained delivery of prednisolone using hyaluronic acid benzyl ester films. Int. J. Pharm, 1994, no. 111, pp. 295-298.
- Yu Y., Lau L.C.M., Lo A.C.-y. et al. Injectable Chemically Crosslinked Hydrogel for the Controlled Release of Bevacizumab in Vitreous: A 6-Month In Vivo Study. Transl. Vis. Sci. Technol, 2015, no. 4, p. 5.
- Lozbina N.V., Bol’shakov I.N., Lazarenko V.I. Properties of chitosan and its use in ophthalmology. Sibirskoe meditsinskoe obozrenie, 2015, no. 5, pp. 5-13 (in Russ.).
- Batyrbekov E.O., Utel’baev Z.T., Ismailova A.B. et al. Prospects of the use of chitosan in ophthalmology. Aktual’nye problemy gumanitarnykh i estestvennykh nauk, 2010, no. 7, pp. 25-28 (in Russ.).
- Lazarenko V.I., Bol’shakov I.N., Il’enkov S.S. et al. Experience in the use of medical products «Bol-hit» and «Collachitis-Bol» in ophthalmology. Rossiyskiy oftal’mologicheskiy zhurnal, 2009, no. 2, pp. 21-24 (in Russ.).
- Takhchidi Kh.P., Takhchidi E.Kh., Novikov S.V. et al. Intraoperative scar prevention in the modeling of nonpenetrating deep sclerectomy in an in vivo experiment. Oftal’mokhirurgiya, 2012, no. 4, pp. 56-60 (in Russ.).
- Shatskikh A.V., Takhchidi Kh.P., Takhchidi E.Kh. et al. The prospects of using natural regulators for preventing excessive scarring during antiglaucomic operations. Prakticheskaya meditsina, 2012, no. 4, pp. 150-153 (in Russ.).
- Bikbov M.M., Khalimov A.R., Bikbova G.M. Oftal’mologicheskoe sredstvo-2 dlya krosslinkinga. Patent RF 2475248, 2013 [Ophthalmic agent-2 for cross-breeding. Patent of the Russian Federation 2475248, 2013].
- Bikbov M.M., Khalimov A., Usubov E. Ultraviolet corneal cross-linking. Vestnik Rossiyskoy akademii meditsinskikh nauk, 2016, no. 3, pp. 224-232 (in Russ.).
- Khalimov A., Bikbov M., Shevchuk N., Bikbova G., Usubov E., Zaynullina N. Riboflavin in the moisture level of the anterior chamber using photosensitizers in various polymer-based (Pilot study). Vestnik Volgogradskogo gosudarstvennogo meditsinskogo universiteta, 2013, no. 48, pp. 195-198 (In Russ.).
- Liu X., Peng W., Wang Y. et al. Synthesis of an RGD-grafted oxidized sodium alginate — N-succinyl chitosan hydrogel and an in vitro study of endothelial and osteogenic differentiation. J. Mater. Chem. B, 2013, no. 1, pp. 4484-4492.
- Kamoun E.A. N-succinyl chitosan — dialdehyde starch hybrid hydrogels for biomedical applications. Journal of Advanced research, 2015, no. 7, pp. 69-77.
- Li M., Han B., Liu W. Preparation and properties of a drug release membrane of mitomycin C with N-succinyl-hydroxyethyl chitosan. J. Mater. Sci: Mater. Med, 2011, no. 22, pp. 2745-2755.
- Yang L.-Q., Lan Y.-Q., Guo H. et al. Ophtalmic drug-loaded N,O-carboxymethyl chitosan hydrogels: synthesis, in vitro and in vivo evaluation. Acta Pharmacologica Sinica, 2010, no. 31, pp. 1625-1634.
- Konovalov M.V., Kurek D.V., Durnev E.A. et al. In Vitro Degradation of Pectin-Chitosan Cryogels. Izvestiya UNTs RAN, 2016, no. 3, pp. 42-45 (in Russ.).
- Kim S.J., Lee K.J., Kim S.I. Swelling Behavior of Polyelectrolyte Complex Hydrogels Composed of Chitosan and Hyaluronic Acid. J. Appl. Polym. Sci, 2004, no. 93, pp. 1097-1101.
- Drozdova M.G., Vodyakova M.A., Demina T.S. et al. Macroporous biodegradable matrices based on chitosan and hyaluronic acid for tissue engineering. Izvestiya UNTs RAN, 2016, no. 3, pp. 33-35 (in Russ.).
- Vil’danova R.R., Sigaeva N.N., Kukovinets O.S. et al. Modified hyaluronic acid and chitosan for the production of hydrogels. Vestnik Bashkirskogo universiteta, 2016, no. 21, pp. 63-68 (in Russ.).
- Vil’danova R.R., Sigaeva N.N., Volodina V.P. et al. Modification of hyaluronic acid and chitosan, aimed at developing hydrogels for ophthalmology. RJAC, 2014, no. 87, pp. 1547-1557.
- Rinaudo M. Periodate Oxidation of Methylcellulose: Characterization and Properties of Oxidized Derivatives. Polymers. 2010, no. 2, pp. 505-521.
- Barbu E., Verestiuc L., Iancu M. et al. Hybrid polymeric hydrogels for ocular drug delivery: nanoparticulate systems from copolymers of acrylic acid-functionalized chitosan and N-isopropylacrylamide or 2-hydroxyethyl methacrylate. Nanotechnol, 2009, no. 20, pp. 225108.
- Li H., Liu Y., Shu X.Z. et al. Synthesis and Biological Evaluation of a Cross-Linked Hyaluronan-Mitomycin C Hydrogel. Biomacromolecules, 2004, no. 5, pp. 895-902.
- Zakharov V.D., Sharipova D.N., Shatskikh A.V. et al. The method of combined treatment of experimental proliferative vitreoretinopathy using 5-fluorouracil on a hydrogel implant (Experimental-morphological study). Oftal’mokhirurgiya, 2006, no. 3, pp. 25-29 (in Russ.).
- Zubareva L.N., Ovchinnikova A.V., Shatskikh A.V. et al. Influence of fluorouracil-carrier implant in the early stages of repair after an antiglaucomatous operation in an experiment . Vestnik OGU, 2007, p. 12, p. 82-84 (in Russ.).
- Belyy Yu.A., Novikov S.V., Tereshchenko A.V. et al. Delivery of medicinal substances to the structures of the posterior segment of the eye with the help of an intravitreal implant. Oftal’mokhirurgiya, 2015, no. 2, pp. 34-38 (in Russ.).
- Rakhmatullin R.R., Burlutskaya O.I., Adel’shin A.I. et al. Development of innovative nanostructured biomaterial for ophthalmic microsurgery. Vestnik OGU, 2012, no. 12, pp. 165-198.
- Zinov’ev E.V., Rakhmatullin R.R., Apchel A.V. et al. Matrix of bioengineering constructions based on hydroalgel of hyaluronic acid and peptide complex. Vestnik Rossiyskoy voenno-meditsinskoy akademii, 2014, no. 2, pp. 138-144 (in Russ.).