Meconium (first stool): its origin, composition and diagnostic potential
A.D. FURSOVA, D.V. PECHKUROV, N.S. KOLTSOVA
Samara State Medical University, Samara
Contact details:
Fursova A.D. — post-graduate student of the Department of Children’s Diseases
Address: 89 Chapaevskaya St., Samara, Russian Federation, 443099, tel.: +7-937-793-20-26, e-mail: fursovaanna063@gmail.com
The literature review substantiates the necessity of diagnosing and forecasting the outcomes of adverse perinatal exposures. A critical analysis of existing approaches was conducted. A conjecture is made about the diagnostic potential of the first stool, which is a unique source for gathering information about intrauterine development of a fetus. Given that meconium can be non-invasively collected from the first minutes of life, its study is particularly valuable for identifying perinatal risks in ill and preterm newborns. The authors justify its diagnostic value of meconium analysis for determining risk groups for intrauterine infections, poisoning with high-density metals, and even genetic and surgical pathologies of the gastrointestinal tract. All this promotes the refinement of diagnostic and treatment algorithms for various perinatal period diseases.
Key words: meconium, perinatal risks, intrauterine infections, newborns.
REFERENCES
- Baranov A.A., Namazova-Baranova L.S., Al’bitskiy V.Yu. et al. Trends in infant and child mortality in the context of the implementation of the modern strategy for the development of healthcare in the Russian Federation. Vestnik RAMN, 2017, vol. 5 (in Russ.), available at: https://cyberleninka.ru/article/n/tendentsii-mladencheskoy-i-detskoy-smertnosti-v-usloviyah-realizatsii-sovremennoy-strategii-razvitiya-zdravoohraneniya-rossiyskoy (accessed on: 01.05.2024).
- Ivshin A.A., Gusev A.V., Novitskiy R.E. Artificial intelligence: predictive analytics of perinatal risk. Voprosy ginekologii, akusherstva i perinatologii, 2020, vol. 6 (in Russ.), available at: https://webiomed.ru/media/publications_files/iskusstvennyi-intellekt-prediktivnaia-analitika-perinatalnogo-riska.pdf (accessed on: 13.05.2024).
- Krivtsova L.A., Belkova T.N., Oksen’chuk T.V. et al. Improving the diagnosis of intrauterine infection in newborns based on the assessment of the cytokine system. MiD, 2020, vol. 1 (80) (in Russ.), accessed on: https://cyberleninka.ru/article/n/sovershenstvovanie-diagnostiki-vnutriutrobnoy-infektsii-u-novorozhdennyh-na-osnove-otsenki-tsitokinovoy-sistemy (accessed on: 09.05.2024).
- Shabalov N.P. Neonatologiya: uchebn. posobie: v 2 t. 6-e izd., ispr. i dop. [Neonatology: textbook. manual: in 2 volumes. 6th ed., corrected and expanded]. Moscow: GEOTAR-Media, 2016. Vol. 1. 736 p. il.
- Shcheplyagina L.A., Netrebenko O.K. Nutrition of a pregnant woman and programming of child diseases at different stages of ontogenesis (theoretical and practical issues). Lechenie i profilaktika, 2012, vol. 1 (2), pp. 7–15 (in Russ.).
- Kil’diyarova R.R. Poliklinicheskaya i neotlozhnaya pediatriya: uchebnik [Polyclinic and emergency pediatrics: textbook]. Moscow: GEOTAR-Media, 2019. 472 p.
- Akhmina N.I. Antenatal’noe formirovanie zdorov’ya rebenka. 2-e izd., dop. [Antenatal formation of child health. 2nd ed., expanded]. Moscow: SIMK, 2013. 168 p.
- Kosenkova E.G., Lysenko I.M., Zhuravleva L.N. Infections specific to the perinatal period (intrauterine infections): prevalence, etiopathogenesis and diagnosis. Okhrana materinstva i detstva, 2011, no. 2 (18), pp. 18–25 (in Russ.).
- Agafonova A.V., Vasil’ev V.V., Rogozina V. Morphological characteristics of the placenta with infectious lesions. Prakticheskaya meditsina, 2021, no. 1 (in Russ.), available at: https://cyberleninka.ru/article/n/morfologicheskaya-harakteristika-platsenty-pri-infektsionnom-porazhenii (accessed on: 01.05.2024).
- Kolobov A.V., Karev V.E. Viral placentitis: morphological features and verification possibilities. Zhurnal infektologii, 2018, no. 4 (in Russ.), available at: https://journal.niidi.ru/jofin/article/view/799/659 (accessed on: 03.05.2024).
- Trdin A., Falnoga I., Fajon V. et al. Mercury speciation in meconium and associated factors. Environmental Research, 2019, vol. 179 (Pt A), p. 108724 DOI: 10.1016/j.envres.2019.108724
- Strukov A.I., Serov V.V. Patologicheskaya anatomiya: uchebnik. 6-e izd., pererab. i dop. [Pathological anatomy: textbook. 6th ed., revised and expanded].Moscow: GEOTAR-Media, 2015. 880 p. il.
- Ostrea E.M. Jr, Matias O., Keane C. et al. Spectrum of gestational exposure to illicit drugs and other xenobiotic agents in newborn infants by meconium analysis. The Journal of pediatrics, 1998, vol. 133 (4), pp. 513–515. DOI: 10.1016/s0022-3476(98)70059-9
- Ostrea E.M. Jr, Bielawski D.M., Posecion N.C. Jr. Meconium analysis to detect fetal exposure to neurotoxicants. Archives of disease in childhood, 2006, vol. 91 (8), pp. 628–629. DOI: 10.1016/j.ntt.2006.12.002
- Wilczyńska P., Skarżyńska E., Lisowska-Myjak B. Meconium microbiome as a new source of information about long-term health and disease: questions and answers. The journal of maternal-fetal & neonatal medicine: the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians, 2019, vol. 32 (4), pp. 681–686. DOI: 10.1080/14767058.2017.1387888
- Cariccio V.L., Samà A., Bramanti P. et al. Mercury Involvement in Neuronal Damage and in Neurodegenerative Diseases. Biological trace element research, 2019, vol. 187 (2), pp. 341–356. DOI: 10.1007/s12011-018-1380-4
- Peng Y., Hu J., Li Y., et al. Exposure to chromium during pregnancy and longitudinally assessed fetal growth: Findings from a prospective cohort. Environment international, 2018, vol. 121, pp. 375–382. DOI: 10.1016/j.envint.2018.09.003
- Saxena D.K., Murthy R.C., Jain V.K. et al. Fetoplacental-maternal uptake of hexavalent chromium administered orally in rats and mice. Bulletin of environmental contamination and toxicology, 1990, vol. 45 (3), pp. 430–435. DOI: 10.1007/BF01701168
- Kiseleva L.G., Khar’kova O.A., Chumakova G.N., Solov’ev A.G., Kosyakov D.S., Kozhevnikov A.Yu. et al. Content of heavy metals in meconium of newborns from smoking mothers. Ekologiya cheloveka, 2015, no. 7, pp. 20–26 (in Russ.).
- Cai F.S., Tang B., Zheng J. et al. First Insight into Fetal Exposure to Legacy and Emerging Plasticizers Revealed by Infant Hair and Meconium: Occurrence, Biotransformation, and Accumulation. Environmental science & technology, 2024, vol. 58 (13), pp. 5739–5749. DOI: 10.1021/acs.est.3c11032
- Turker G., Ozsoy G., Ozdemir S. et al. Effect of heavy metals in the meconium on preterm mortality: preliminary study. Pediatrics international: official journal of the Japan Pediatric Society, 2013, vol. 55 (1), pp. 30–34. DOI: 10.1111/j.1442-200X.2012.03744.x
- Lisowska-Myjak B., Skarżyńska E., Jakimiuk A. Links Between Vitamin D-Binding Protein, Alpha-1 Antitrypsin and Neutrophil Proteins in Meconium. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology, 2023, vol. 57 (1), pp. 15–22. DOI: 10.33594/000000604
- Peng S., Liu L., Zhang X., Heinrich J., Zhang J., Schramm K.W. et al. A nested case-control study indicating heavy metal residues in meconium associate with maternal gestational diabetes mellitus risk. Environmental health: a global access science source, 2015, vol. 14, p. 19. DOI: 10.1186/s12940-015-0004-0
- Jiménez E., Marín M.L., Martín R. et al. Is meconium from healthy newborns actually sterile? Research in microbiology, 2008, vol. 159 (3), pp. 187–193. DOI: 10.1016/j.resmic.2007.12.007
- Moles L., Gómez M., Heilig H. et al. Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life. PLoS One,2013, vol. 8 (6). DOI: 10.1371/journal.pone.00669
- Warner B.B., Tarr P.I. Necrotizing enterocolitis and preterm infant gut bacteria. Seminars in fetal & neonatal medicine, 2016, vol. 21 (6), pp. 394–399. DOI: 10.1016/j.siny.2016.06.001
- Mshvildadze M., Neu J., Shuster J. et al. Intestinal microbial ecology in premature infants assessed with non-culture-based techniques. The Journal of pediatrics, 2010, vol. 156 (1), pp. 20–25. DOI: 10.1016/j.jpeds.2009.06.063
- Jerdee T., Newman B., Rubesova E. Meconium in perinatal imaging: associations and clinical significance. Seminars in ultrasound, CT, and MR, 2015, vol. 36 (2), pp. 161–77. DOI: 10.1053/j.sult.2015.01.007
- Kadambari S., Whittaker E., Lyall H. Postnatally acquired cytomegalovirus infection in extremely premature infants: how best to manage? Archives of disease in childhood. Fetal and neonatal edition, 2020, vol. 105 (3), pp. 334–339. DOI: 10.1136/archdischild-2019-317650
- Samuels N., van de Graaf R.A., de Jonge R.C.J. et al. Risk factors for necrotizing enterocolitis in neonates: a systematic review of prognostic studies. BMC pediatrics, 2017, vol. 17 (1), p. 105. DOI: 10.1186/s12887-017-0847-3
- Michael T., Kohn E., Daniel S. et al. Prenatal exposure to heavy metal mixtures and anthropometric birth outcomes: a cross-sectional study. Environmental health: a global access science source, 2022, vol. 21 (1), p. 139. DOI: 10.1186/s12940-022-00950- z
- Wise S.S., Holmes A.L., Wise J.P. Hexavalent chromium-induced DNA damage and repair mechanisms. Reviews on environmental health, 2008, vol. 23 (1), pp. 39–57. DOI: 10.1515/reveh.2008.23.1.39