Mechanisms of coagulopathy in COVID-19
KH.S. KHAERTYNOV, V.A. ANOKHIN, S.V. KHALIULLINA, E.A. SALAKHOVA
1Kazan State Medical University, Kazan
Contact details:
Khaertynov Kh.S. — MD, Associate Professor of the Department of Childhood Infections
Address: 49 Butlerov St., Kazan, Russian Federation, 420012, tel.: +7-903-342-96-27, e-mail: khalit65@yandex.ru
Coronavirus infection COVID-19 is associated with coagulopathy and thrombosis. The mechanisms of coagulopathy and thrombosis in COVID-19 are diverse and are due to the interaction of the SARS-COV2 with vascular endothelium and innate immune cells. The main pathological processes leading to thrombosis in severe forms of COVID-19 include the hyperinflammation and dysfunction of the vascular endothelium. Understanding the pathophysiology of COVID-19 associated coagulopathy will allow us to identify additional areas of therapy aimed at preventing thrombosis and improving the prognosis in severe forms of COVID-19.
Key words: COVID-19, inflammation, endothelial dysfunction, thrombosis.
REFERENCES
- Iba T., Warkentin T.E, Thachil J. et al. Proposal of the Definition for COVID-19-Associated Coagulopathy. J Clin Med, 2021, vol. 10 (2), p. 191. DOI: 10.3390/jcm10020191
- Makatsariya A.D., Slukhanchuk E.V., Bitsadze V.O. et al. COVID-19, hemostasis disorders and the risk of thrombotic complications. Vestnik RAMN, 2020, vol. 57, no. 4, pp. 306–317 (in Russ.).
- Khismatullin R.R., Ivaeva R.A., Abdullaeva Sh. et al. Pathological manifestations of inflammatory microthrombosis in COVID-19. Kaz. med. zhurnal, 2022, vol. 103, no. 4, pp. 575–587 (in Russ.).
- Burn E., Duarte-Salles T., Fernandez-Bertolin S. et al. Venous or arterial thrombosis and deaths among COVID-19 cases: a European network cohort study. Lancet Infect Dis, 2022, vol. 22, pp. 1142–1152.
- Ackermann M., Verleden S.E., Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med, 2020, vol. 383 (2), pp. 120–128.
- Menter T., Haslbauer J.D., Nienhold R. et al. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology, 2020, vol. 77 (2), pp. 198–209.
- Menter T., Haslbauer J.D., Nienhold R. et al. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology, 2020, vol. 77 (2), pp. 198–209.
- Wichmann D., Sperhake J.P., Lutgehetmann M. et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med, 2020, vol. 173 (4), pp. 268–277.
- Rey J.R., Caro-Codón J., Pineda D.P. et al. Arterial thrombotic complications in hospitalized patients with COVID-19. Revista Espanola de Cardiologia (English ed.), 2020, vol. 73 (9), p. 769. doi: 10.1016/j.rec.2020.05.008
- Lobastov K.V., Schastlivtsev I.V., Porembskaya O.Ya., Dzhenina O.V., Bargandzhiya A.B., Tsaplin S.N. COVID-19-associated coagulopathy: a review of current recommendations for diagnosis, treatment and prevention. Ambulatornaya khirurgiya, 2020, no. 3–4, pp. 36–51 (in Russ.). DOI: 10.21518/1995-1477-2020-3-4-36-51
- Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost, 2020, vol. 18 (4), pp. 844–847. DOI: 10.1111/jth.14768
- Jiang L., Li Y., Du H. et al. Effect of Anticoagulant Administration on the Mortality of Hospitalized Patients With COVID-19: An Updated Systematic Review and Meta-Analysis. Front. Med., 2021, vol. 8, p. 698935. DOI: 10.3389/fmed.2021.698935
- Vlasov T.D., Yashin S.M. Arterial and venous thromboses. Is Virchow’s triad always applicable? Regionarnoe krovoobrashchenie i mikrotsirkulyatsiya, 2022, vol. 21, no. 1, pp. 78–86 (in Russ.).
- Conway E.M., Mackman N., Warren R.O., Wolberg A.S., Mosnier L.O., Campbell R.A. et al. Undestanding COVID-19 associated coagulopathy. Nat Rev Immunol, 2022, vol. 22 (10), pp. 639-649. doi: 10.1038/s41577-022-00762-9.
- Merad M., Martin J.C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol, 2020, vol. 20 (6), pp. 355–362.
- Castelli V., Cimini A., Ferri C. Cytokine Storm in COVID-19: «When You Come Out of the Storm, You Won’t Be the Same Person Who Walked in». Front. Immunol, 2020, vol. 11, p. 2132. DOI: 10.3389/fimmu.2020.02132
- Fajgenbaum D.C., June C.H. Cytokine Storm. N Engl J Med, 2020, vol. 383, pp. 2255–2273. DOI: 10.1056/NEJMra2026131
- Rawson T.M., Moore L.S.P., Zhu N. et al. Bacterial and Fungal Coinfection in Individuals With Coronavirus: A Rapid Review To Support COVID-19 Antimicrobial Prescribing. Clin Infect Dis, 2020, vol. 71 (9), pp. 2459–2468. DOI: 10.1093/cid/ciaa530
- Karawajczyk M., Douhan Håkansson L., Lipcsey M., Hultström M., Pauksens K., Frithiof R., Larsson A. High expression of neutrophil and monocyte CD64 with simultaneous lack of upregulation of adhesion receptors CD11b, CD162, CD15, CD65 on neutrophils in severe COVID-19. Therapeutic Advances in Infectious Disease, 2021, vol. 8, pp. 1–13. DOI: 10.1177/20499361211034065
- Zuo Y., Yalavarthi S., Shi H. et al. Neutrophil extracellular traps in COVID-19. JCI Insight, 2020, vol. 5 (11), p. e138999. DOI: 10.1172/jci.insight.138999
- Brinkmann V., Reichard U., Goosmann C. et al. Neutrophil extracellular traps kill bacteria. Science, 2004, vol. 303, pp. 1532–1535.
- Barnes B.J., Adrover J.M., Baxter-Stoltzfus A. et al. Journal of Experimental Medicine, 2020, vol. 217 (6), p. e20200652.
- Middleton E. A., He X.-Y., Denorme F. et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood, 2020, vol. 136 (10), pp. 1169–1179. DOI: 10.1182/blood.2020007008
- Cedervall J., Zhang Y., Huang H. et al. Neutrophil Extracellular Traps Accumulate in Peripheral Blood Vessels and Compromise Organ Function in Tumor-Bearing Animals. Cancer Res, 2015, vol. 75, pp. 2653–2662.
- Fuchs T.A., Brill A., Duerschmied D. et al. Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. USA, 2010, vol. 107, pp. 15880–15885.
- Laridan E., Martinod K., De Meyer S.F. Neutrophil Extracellular Traps in Arterial and Venous Thrombosis. Semin. Thromb. Hemost, 2019, vol. 45, pp. 86–93.
- Martinod K., Wagner D.D. Thrombosis: tangled up in NETs. Blood, 2014, vol. 123, pp. 2768–2776.
- Jimenez-Alcazar M., Rangaswamy C., Panda R. et al. Host DNases ´prevent vascular occlusion by neutrophil extracellular traps. Science, 2017, vol. 358, pp 1202–1206.
- Bonaventura A. et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol, 2021, vol. 21 (5), pp. 319–329. DOI: 10.1038/s41577-021-00536-9
- Brill A., Fuchs T.A., Savchenko A.S. et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost, 2012, vol. 10 (1), pp. 136–144. DOI: 10.1111/j.1538-7836.2011.04544.x
- Maksimenko A.V., Turashev A.D. Functions and state of the endothelial glycocalyx in normal and pathological conditions. Ateroskleroz i dislipidemii, 2011, no. 2, pp. 4–17 (in Russ.).
- Pons S., Fodil S., Azoulay E. et al. The vascular endothelium: The cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Crit. Care, 2020, vol. 24, p. 353.
- Deng H., Tang T.X., Deng C. et al. Endothelial Dysfunction and SARS-CoV-2 Infection: Association and Therapeutic Strategies. Pathogens, 2021, vol. 10 (5), p. 582. DOI: 10.3390/pathogens10050582
- Zubairova L.D., Mustafin I.G., Nabiullina R.M. Pathogenetic approaches to the study of markers of venous thrombosis. Kaz. med. zhurnal, 2013, vol. 94, no. 5, pp. 685–691 (in Russ.).
- Purcell S.C., Godula K. Synthetic glycoscapes: addressing the structural and functional complexity of the glycocalyx. Interface Focus, 2019, vol. 9 (2). DOI: 10.1098/rsfs.2018.0080
- Vaduganathan M., Vardeny O., Michel T. et al. Renin-angiotensin-aldosterone system inhibitors in patients with covid-19. N Engl J Med, 2020, vol. 382, pp. 1653–1659. DOI: 10.1056/NEJMsr2005760
- Lang J., Yang N., Deng J. et al. Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans. PLoS ONE, 2011, vol. 6, pp. e23710. DOI: 10.1371/journal.pone.0023710
- Iba T., Levy J. H. Derangement of the endothelial glycocalyx in sepsis. J. Thromb. Haemost, 2019, vol. 17, pp. 283–294. doi: 10.1111/jth.14371
- Nikmanesh M., Cancel L.M., Shi Z. D. et al. Heparan sulfate proteoglycan, integrin, and syndecan-4 are mechanosensors mediating cyclic strain-modulated endothelial gene expression in mouse embryonic stem cellderived endothelial cells. Biotechnol. Bioeng, 2019, vol. 116, pp. 2730–2741. DOI: 10.1002/bit. 27104
- van den Berg B.M., Vink H., Spaan J.A. The endothelial glycocalyx protects against myocardial edema. Circ Res, 2003, vol. 92, pp. 592–594. DOI: 10.1161/01.RES.0000065917.53950.75
- Wadowski P.P., Kautzky-Willer A., Gremmel T. et al. Sublingual microvasculature in diabetic patients. Microvasc Res, 2020, vol. 129, p. 103971. DOI: 10.1016/j.mvr.2019.103971
- Salmon A.H., Satchell S.C. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability. J Pathol, 2012, vol. 226, pp. 562–574. DOI: 10.1002/path.3964
- Beurskens D.M.H., Bol M.E., Delhaas T. et al. Decreased endothelial glycocalyx thickness is an early predictor of mortality in sepsis. Anaesthesia and Intensive Care, 2020, vol. 48 (3), pp. 221–228. DOI: 10.1177/0310057X20916471
- Schmidt E.P., Overdier K.H., Sun X. et al. Urinary glycosaminoglycans predict outcomes in septic shock and acute respiratory distress syndrome. Am J Respir Crit Care Med, 2016, vol. 194, pp. 439–449. DOI: 10.1164/rccm.201511-2281OC
- Jin Y., Ji W., Yang H. et al. Endothelial activation and dysfunction in COVID-19: From basic mechanisms to potential therapeutic approaches. Signal. Transduct. Target. Ther, 2020, vol. 5, p. 293. DOI: 10.1038/s41392-020-00454-7
- Kondashevskaya M.V. Modern ideas about the role of heparin in hemostasis and regulation of enzymatic and hormonal activity. Vestn. RAMN, 2010, no. 7, pp. 35–43 (in Russ.).
- Escher R., Breakey N., Lammle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res, 2020, vol. 190, p. 62. DOI: 10.1016/j.thromres.2020.04.014
- Bernard I., Limonta D., Mahal L.K. et al. Endothelium Infection and Dysregulation by SARS-CoV-2: Evidence and Caveats in COVID-19. Viruses, 2020, vol. 13, p. 29. DOI: 10.3390/v13010029
- Streetley J., Fonseca A.V., Turner J. et al. Stimulated release of intraluminal vesicles from Weibel-Palade bodies. Blood, 2019, vol. 133, pp. 2707–2717. DOI: 10.1182/blood-2018-09-874552
- Libby P., Lusche, T. COVID-19 is, in the end, an endothelial disease. Eur. Heart J, 2020, vol. 41, pp. 3038–3044. DOI: 10.1093/eurheartj/ehaa623
- Zheng X.L. ADAMTS13 and von willebrand factor in thrombotic thrombocytopenic purpura. Annual Review of Medicine, 2015, vol. 66, pp. 211–225. DOI: 10.1146/annurev-med-061813-013241
- Fujikawa K., Suzuki H., McMullen B., Chung D. Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family. Blood, 2001, vol. 98 (6), pp. 1662–1666. DOI: 10.1182/blood.V98.6.1662
- Doevelaar A.A.N., Bachmann M., Hölzer B., Seibert F.S., Rohn B.J., Bauer F., Witzke O., Dittmer U., Bachmann M., Yilmaz S., Dittmer R., Schneppenheim S., Babel N., Budde U., Westhoff T.H. Von Willebrand Factor Multimer Formation Contributes to Immunothrombosis in Coronavirus Disease 2019. Critical Care Medicine, 2021, vol. 49 (5), pp. e512–e520. DOI: 10.1097/CCM.0000000000004918
- Hafez W., Ziade M.A., Arya A. et al. Reduced ADAMTS13 Activity in Correlation with Pathophysiology, Severity, and Outcome of COVID-19: A Retrospective Observational Study. Int J Infect Dis, 2022, vol. 117, pp. 334–344. DOI: 10.1016/j.ijid.2022.02.019
- Fard M.B., Fard S.B., Ramazi S. Thrombosis in COVID-19 infection: Role of platelet activation-mediated immunity. Thrombosis Journal, 2021, vol. 19, p[. 59.
- Caillon A., Trimaille A., Favre J. et al. Role of neutrophils, platelets, and extracellular vesicles and their interactions in COVID-19-associated thrombopathy. J. Thromb. Haemost, 2022, vol. 20, pp. 17–31. DOI: 10.1111/jth.15566
- Althaus K., Marini I., Zlamal J. et al. Antibody-induced procoagulant platelets in severe COVID-19 infection. Blood, 2021, vol. 137, pp. 1061–1071. DOI: 10.1182/blood.2020008762
- Zaid Y., Puhm F., Allaeys I. et al. Platelets can associate with SARS-Cov-2 RNA and are hyperactivated in COVID-19. Circ. Res, 2020, vol. 127 (11), pp. 1404–1418. DOI: 10.1161/CIRCRESAHA.120.317703
- Mayadas T.N., Johnson R.C., Rayburn H. et al. Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice. Cell, 1993, vol. 74 (3), pp. 541–554. Doi: 10.1016/0092-8674(93)80055-J