Limb prosthetics
M.G. BILGILDEEV1, I.ZH. OSMONALIEV2, 3, R.F. BAIKEEV2
¹KSMA — Branch Campus of the FSBEIFPE RMACPE MOH Russia, Kazan
2Kazan State Medical University, Kazan
3City Clinical Hospital No. 7, Kazan
Contact details:
Bilgildeev M.G. — resident physician of the Department of Traumatology and Orthopedics
Address: Kazan, 11 Mushtari St., Kazan, Russian Federation, 420012, e-mail: listik99@list.ru
Limb loss is a growing medical-social problem. By 2050, the number of people suffering from this nosology (IDC 10 Z89.3-6) is expected to double. In addition to prostheses, microsurgery development has created a possibility of the limb surgical transplantation, however in 17% of cases it is necessary to carry out recurrent amputation. Limb prosthetics is highly-technological process which follows the achievements of physics, chemistry and mathematics. Today, the most perspective types of limbs prostheses are bionic myoelectric ones. The future of prosthetics looks as follows: invasive electrodes for control, sensitization of limb prosthesis, occurrence of new degrees of freedom, neuronal interfaces. Among the medical problems which expect resolution not as the cases of art of a particular doctor-surgeon, but as a developed technology, one should mention target reversal reinnervation of the injured contact of the afferent nerve, motoric neuron and muscles, fixing of prosthesis to the limb stump, installation of electrodes into the limb, training process of the patients adapting to the limb prosthesis, restoration of proprioceptive sensitivity, elucidation of phantom pain. The details of prosthetics process stated in the present review are encouraging and promise occurrence of even more perfect orthopedic products.
Key words: limb amputation, bionic prosthesis, installation on a stump, adaptation to prosthesis.
REFERENCES
- Ziegler-Graham K., MacKenzie E.J.,.Ephraim P.L., Travison T.G., Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil, 2008, vol. 89 (3), pp. 422–429.
- Salminger S., Roche A.D., Sturma A., Mayer J.A., Aszmann O.C. Hand transplantation versus hand prosthetics: pros and cons. Curr Surg Rep, 2016, vol. 4. DOI: 10.1007/s40137-016-0128-3
- Shores J.T., Brandacher G., Lee W.P. Hand and upper extremity transplantation: an update of outcomes in the worldwide experience. Plast Reconstr Surg, 2015, vol. 135 (2), pp. 351e–360e.
- Predvoskhishchaya budushchee: poslednie razrabotki v protezirovanii: sayt proizvoditelya bionicheskikh protezov OOO «Motorika», g. Moskva, territoriya innovatsionnogo tsentra «Skolkovo», 2017 [Anticipating the future: the latest developments in prosthetics: the site of the manufacturer of bionic prostheses Motorika LLC, Moscow, the territory of the Skolkovo innovation center], available at: https://motorica.org/predvosxishhaya-budushhee-poslednie-razrabotki-v-protezirovanii
- Biddiss E., Chau T. Upper-limb prosthetics: critical factorsin device abandonment. Am J Phys Med Rehabil, 2007, Dec, vol. 86 (12), pp. 977–987.
- Farina D., Jiang N., Rehbaum H., Holobar A., Graimann B., Dietl H., et al. The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges. IEEE Trans Neural Syst Rehabil Eng, 2014, vol. 22 (4), pp. 797–809.
- Clippinger F.W., Avery R., Titus B.R. A sensory feedback system for an upper limb amputation prosthesis. Bull Prosthet Res., 1974, Fall, pp. 247–258.
- Horch K., Meek S., Taylor T.G., Hutchinson D.T. Object discrimination with an artificial hand using electrical stimulation of peripheral tactile and proprioceptive pathways with intrafascicular electrodes. IEEE Trans Neural Syst Rehabil Eng, 2011, vol. 19 (5), pp. 483–489.
- Tan D.W., Schiefer M.A., Keith M.W., Anderson J.R., Tyler J., Tyler D.J. A neural interface provides long-term stable natural touch perception. Sci. Trans Med., 2014, vol. 6 (257), p. 257ra138.
- Davis T.S., et al. Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves. J Neural Eng., 2016, vol. 13 (3), p. 036001.
- Wendelken et al. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves. J. Neuro Engineering and Rehabilitation, 2017, vol. 14, p. 121. DOI: 10.1186/s12984-017-0320-4
- Rousche P.J., Normann R.A. A method for pneumatically inserting an array of penetrating electrodes into cortical tissue. Ann Biomed Eng., 1992, vol. 20 (4), pp. 413–422.
- Wendelken S., Page D.M., Davis T., Heather Wark A.C., David Kluger T., Duncan C., Warren D.J., Hutchinson D.T., Clark G.A. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves. Journal of Neuro Engineering and Rehabilitation, 2017. DOI: 10.1186/s12984-017-0320-4
- Kalman R.E. Research Institute for Advanced Study, 2 Baltimore, Md. A New Approach to Linear Filtering and Prediction Problems. Transactions of the ASME — Journal of Basic Engineering, 1960, vol. 82 (Series D), pp. 35–45.
- Prahm C., Vujaklija I., Kayali F., Purgathofer P., Aszmann O.C. Game-based rehabilitation for Myoelectric prosthesis control. J MIR Serious Games, 2017, vol. 5 (1). DOI: 10. 2196/games.6026
- Kagan Z.B. et al. Linear methods for reducing noise in peripheral nerve motor decodes. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Orlando, 2016.
- London B.M., Miller L.E. Responses of somatosensory area 2 neurons to actively and passively generated limb movements. Journal of Neurophysiology, 2013, vol. 109, pp. 1505–1513. DOI: 10.1152/jn.00372.2012, PMID: 23274308
- Padberg J., Cooke D.F., Cerkevich C.M., Kaas J.H., Krubitzer L. Cortical connections of area 2 and posterior parietal area 5 in macaque monkeys. Journal of Comparative Neurology, 2019, vol. 527, pp. 718–737. DOI: 10. 1002/cne.24453, PMID: 29663384
- Chowdhury R.H., Glaser J.I., Miller L.E. Area 2 of primary somatosensory cortex encodes kinematics of the whole arm. Life, 2020, vol. 9, p. e 48198. DOI: 10.7554/eLife.48198
- Antfolk C., D’Alonzo M., Rosen B., Lundborg G., Sebelius F., Cipriani C. Sensory feedback in upper limb prosthetics. Expert Rev Med Devices, 2013, vol. 10 (1), pp. 45–54.
- Antfolk C., Cipriani C., Carrozza M.C., Balkenius C., Björkman A., Lundborg G. et al. Transfer of tactile input from an artificial hand to the forearm: experiments in amputees andable-bodied volunteers. Disabil Rehabil Assist Technol, 2013, vol. 8 (3), pp. 249–254.
- Antfolk C., D’Alonzo M., Rosen B., Lundborg G., Sebelius F., Cipriani C. Sensory feedback in upper limb prosthetics. Expert Rev Med Devices, 2013, vol. 10 (1), pp. 45–54.
- Schiefer M., Tan D., Sidek S.M., Tyler D.J. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis. J Neural Eng, 2016, vol. 13 (1), pp. 16001.
- Antfolk C., D’Alonzo M., Rosen B., Lundborg G., Sebelius F., Cipriani C. Sensory feedback in upper limb prosthetics. Expert Rev Med Devices, 2013, vol. 10 (1), pp. 45–54.
- Dietrich C., Nehrdich S., Seifert S., Blume K.R., Miltner W.H.R., Hofmann G.O., W.T. Leg Prosthesis With Somatosensory Feedback Reduces Phantom Limb Pain and Increases Functionality. Front. Neurol, 26 April 2018. DOI: 10.3389/fneur.2018.00270
- Flor H., Denke C., Schaefer M., Grusser S. Effect of sensory discrimination training on cortical reorganization and phantom limb pain. Lancet, 2001, vol. 357, pp. 1763–1764. DOI: 10.1016/S0140-6736(00)04890-X
- MacIver K., Lloyd D.M., Kelly S., Roberts N., Nurmikko T. Phantom limb pain, cortical reorganization and the therapeutic effect of mental imagery. Brain, 2008, vol. 131, pp. 2181–2191. DOI: 10.1093/brain/awn124
- Finn S.B., Perry B.N., Clasing J.E., Walters L.S., Jarzombek S.L., Curran S. et al. A randomized, controlled trial of mirror therapy for upper extremity phantom limb pain in male amputees. Front Neurol, 2017, vol. 8, p. 267. DOI: 10.3389/ fneur.2017.00267
- Lendaro E., Mastinu E., Håkansson B., Ortiz-Catalan M. Real-time classification of non-weight bearing lower — limb movement so using. EMG to facilitate phantom motor execution: engineering and case study application non phantom limb pain. Front Neurol, 2017, vol. 8, p. 470. DOI: 10.3389/fneur.2017.004709
- Bol’shakov A.A., Kulik A.A., Glazkov V.P. Razrabotka bioelektricheskoy sistemy upravleniya protezom bedra cheloveka [Development of a bioelectric control system for a human hip prosthesis]. Izv. Sankt-Peterburg. Tekhnolog. in-ta (tekhn. un-ta), 2015, no. 29 (55), pp. 89–93 (in Russ.).
- Kulik A.A. Matematicheskoe modelirovanie dvizheniya bioelektricheskogo proteza bedra [Mathematical modeling of the movement of a bioelectric hip prosthesis]. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Upravlenie, vychislitel’naya tekhnika i informatika, 2017, no. 2, pp. 7–12 (in Russ.).
- George J.A., Kluger D.T., Davis T. S., Wendelken S.M., Okorokova E.V., He Q., Duncan C.C., Hutchinson D.T., Thumser Z.C., Beckler D.T., Marasco P.D., Bensmaia S.J., Clark G.A. Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand. Science Robotics, 24 Jul 2019, vol. 4, Issue 32, eaax 2352. DOI: 10.1126/scirobotics.aax2352
- Kalman D.M., George, D.T., Kluger C., Duncan S., Wendelken T., Davis D.T. Hutchinson G.A. Motor control and sensory feedback enhance prosthesis embodiment and reduce phantom pain after long-term hand amputation. Front. Hum. Neurosci, 2018, vol. 12, p. 352.
- Resnik L., Klinger S.L., Etter K. The DEKA Arm: Its features, functionality, and evolution during the Veterans Affairs Study to optimize the DEKA Arm. Prosthetics Orthot. Int, 2014, vol. 38, pp. 492–504.
- Loeser J.D., Treede R.D. The Kyoto protocol of IASP basic pain terminology. Pain, 2008, vol. 137 (3), pp. 473–477.
- Aman M., Festin C., Sporer M.E., Gstoettner C., Prahm C., Bergmeister K.D., Aszmann O.C..Bionic reconstruction restoration of extremity function with osso integrated and mind-controlled prostheses. Wien Klin Wochenschr, 2019, vol. 131, pp. 599–607. DOI: 10.1007/s00508-019-1518-1