Etiological and pathogenetic mechanisms of forming muscle dystonias
S.E. MUNASIPOVA1, 2, Z.A. ZALYALOVA1, 2, A.A. TEREKHOVA1
1Kazan State Medical University, Kazan
2Center for Movement Disorders and Botulinum Therapy of the Republic of Tatarstan, Kazan
Contact details:
Munasipova S.E. — PhD (medicine), Assistant Lecturer of the Department of Neurology and Rehabilitation, neurologist
Address: 49 Butlerov St., Kazan, Russian Federation, 420012, tel.: +7-960-045-53-01, e-mail: sabina.munasipova@mail.ru
This article discusses the issues of muscular dystonia pathogenesis that are relevant to modern medicine, as well as the possibility of using the pathogenetic concept as a substrate to supplement the classification criteria. Reviewing the international publications on etiopathophysiology, genetics and classification, the article summarizes the main mechanisms for the occurrence of a pathological process at different levels of the nervous system. Despite the frequent clinical similarity of the symptoms of various forms of muscular dystonia, these symptoms may be the result of dysfunction of completely different genetic and neurophysiological mechanisms. The article focuses on the importance of studying the etiological and pathogenetic mechanisms and their further implementation in clinical practice in order to develop more accurate treatment techniques aimed at eliminating the specific causes of the development of specific forms of muscular dystonia.
Key words: muscular dystonia, etiology, pathogenesis, classification, genetics of dystonia.
REFERENCES
- Zalyalova Z.A. Modern classifications of muscular dystonia, treatment strategy. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova, 2013, vol. 113, no. 3, pp. 85–89 (in Russ.).
- Zalyalova Z.A. Benign essential blepharospasm: epidemiology, clinical manifestations, pathophysiology, botulinum therapy. Nevrologiya, neyropsikhiatriya, psikhosomatika, 2021, vol. 13, no. 1, pp. 119–125 (in Russ.). DOI: 10.14412/2074-2711-2021-1-119-125
- Ozelius L.J., Lubarr N., Bressman S.B. Milestones in dystonia. Mov Disord, 2011, vol. 26 (6), pp. 1106–1126. DOI: 10.1002/mds.23775
- Rilstone J.J. et al. Brain dopamine-serotonin vesicular transport disease and its treatment. N Engl J Med., 2013, vol. 368, pp. 543–550. DOI: 10.1056/NEJMoa1207281
- Ozelius L.J., Lubarr N., Bressman S.B. Milestones in dystonia, 2011, vol. 26 (6), pp. 1106–1126. DOI: 10.1002/mds.23775
- Singer H.S., Mink J.W., Gilbert D.L., Jankovic J. Movement Disorders in Childhood. Philadelphia, 2010. 288 p.
- Rosencrantz R., Schilsky M. Wilson disease: pathogenesis and clinical considerations in diagnosis and treatment. Semin Liver Dis., 2011, vol. 31, pp. 245–259. DOI: 10.1055/s-0031-1286056
- Muller U. The monogenic primary dystonias. Brain, 2009, vol. 132, pp. 2005–2025. DOI: 10.1093/brain/awp172
- Ozelius L.J., Lubarr N., Bressman S.B. Milestones in dystonia. Mov Disord, 2011, vol. 26 (6), pp. 1106–1126. DOI: 10.1002/mds.23775
- Lohmann K., Klein C. Update on the Genetics of Dystonia. Curr Neurol Neurosci Rep, 2017, vol. 17 (3), p. 26. DOI: 10.1007/s11910-017-0735-0
- Marras C., Lang A., van de Warrenburg B.P. et al. Nomenclature of genetic movement disorders: Recommendations of the international Parkinson and movement disorder society task force. Mov Disord, 2016, vol. 31 (4), pp. 436–457. DOI: 10.1002/mds.26527
- Albanese A., Bhatia K., Bressman S.B. et al. Phenomenology and classification of dystonia: a consensus update. Mov Disord, 2013, vol. 28 (7), pp. 863–873. DOI: 10.1002/mds.25475
- Simonyan K., Berman B.D., Herscovitch P., Hallett M. Abnormal striatal dopaminergic neurotransmission during rest and task production in spasmodic dysphonia. J Neurosci, 2013, vol. 33 (37), pp. 14705–14714. DOI: 10.1523/JNEUROSCI.0407-13.2013
- Jinnah H.A., Sun Y.V. Dystonia genes and their biological pathways. Neurobiol Dis, 2019, vol. 129, pp. 159–168. DOI: 10.1016/j.nbd.2019.05.014
- Charlesworth G., Plagnol V., Holmström K.M. et al. Mutations in ANO3 cause dominant craniocervical dystonia: ion channel implicated in pathogenesis. Am J Hum Genet, 2012, vol. 91 (6), pp. 1041–1050. DOI: 10.1016/j.ajhg.2012.10.024
- Reichmann H., Naumann M., Hauck S., Janetzky B. Respiratory chain and mitochondrial deoxyribonucleic acid in blood cells from patients with focal and generalized dystonia. Mov Disord, 1994, vol. 9 (6), pp. 597–600. DOI: 10.1002/mds.870090603
- Pearson T.S. et al. Phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS). Curr Neurol Neurosci Rep, 2013, vol. 13, p. 342. DOI: 10.1007/s11910-013-0342-7.
- Zhou B., Westaway S.K., Levinson B. et al. A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet, 2001, vol. 28 (4), pp. 345–349. DOI: 10.1038/ng572
- Rouault T.A., Cooperman S. Brain iron metabolism. Semin Pediatr Neurol, 2006, vol. 13 (3), pp. 142–148. DOI: 10.1016/j.spen.2006.08.002
- Miyajima H., Takahashi Y., Kono S. Aceruloplasminemia, an inherited disorder of iron metabolism. Biometals, 2003, vol. 16 (1), pp. 205–213. DOI: 10.1023/a:1020775101654
- McNeill A., Birchall D., Hayflick S.J. et al. T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology, 2008, vol. 70 (18), pp. 1614–1619. Doi: 10.1212/01.wnl.0000310985.40011.d6
- Groen J.L., Andrade A., Ritz K. et al. CACNA1B mutation is linked to unique myoclonus-dystonia syndrome. Hum Mol Genet, 2015, vol. 24 (4), pp. 987–993. DOI: 10.1093/hmg/ddu513
- Mencacci N.E., Rubio-Agusti I., Zdebik A. et al. A missense mutation in KCTD17 causes autosomal dominant myoclonus-dystonia. Am J Hum Genet, 2015, vol. 96 (6), pp. 938–947. DOI: 10.1016/j.ajhg.2015.04.008
- Zoccolella S., Martino D., Defazio G. et al. Hyperhomocysteinemia in movement disorders: Current evidence and hypotheses. Curr Vasc Pharmacol, 2006, vol. 4 (3), pp. 237–243. DOI: 10.2174/157016106777698414
- Jinnah H.A., Neychev V., Hess E.J. The Anatomical Basis for Dystonia: The Motor Network Model. Tremor Other Hyperkinet Mov (NY), 2017, vol. 7, p. 506. DOI: 10.7916/D8V69X3S
- Tewari A., Fremont R., Khodakhah K. It’s not just the basal ganglia: Cerebellum as a target for dystonia therapeutics. Movement disorders: official journal of the Movement Disorder Society, 2017, vol. 32 (11), pp. 1537–1545, available at: https://pubmed.ncbi.nlm.nih.gov/28843013/
- Li Z., Prudente C.N., Stilla R. et al. Alterations of resting-state fMRI measurements in individuals with cervical dystonia. Hum Brain Mapp, 2017, vol. 38 (8), pp. 4098–4108. DOI: 10.1002/hbm.23651
- Gruber D., Kühn A.A., Schoenecker T. et al. Pallidal and thalamic deep brain stimulation in myoclonus-dystonia. Mov Disord, 2010, vol. 25 (11), pp. 1733–1743. DOI: 10.1002/mds.23312
- Neychev V.K., Fan X., Mitev V.I. et al. The basal ganglia and cerebellum interact in the expression of dystonic movement. Brain, 2008, vol. 131 (9), pp. 2499–2509. DOI: 10.1093/brain/awn168
- Rossi M., Balint B., Millar Vernetti P. et al. Genetic Dystonia-ataxia Syndromes: Clinical Spectrum, Diagnostic Approach, and Treatment Options. Mov Disord Clin Pract, 2018, vol. 5 (4), pp. 373–382. DOI: 10.1002/mdc3.12635
- Cohen L.G., Hallett M. Hand cramps: clinical features and electromyographic patterns in a focal dystonia. Neurology, 1988, vol. 38, pp. 1005–1012. DOI: 10.1212/wnl.38.7.1005
- Lozeron P., Poujois A., Richard A. et al. Contribution of TMS and rTMS in the Understanding of the Pathophysiology and in the Treatment of Dystonia. Front Neural Circuits, 2016, vol. 10, p. 90. DOI: 10.3389/fncir.2016.00090
- Patel N., Jankovic J., Hallett M. Sensory aspects of movement disorders. Lancet Neurol, 2014, vol. 13 (1), pp. 100–112. DOI: 10.1016/S1474-4422(13)70213-8
- Avanzino L., Tinazzi M., Ionta S., Fiorio M. Sensory-motor integration in focal dystonia. Neuropsychologia, 2015, vol. 79 (B), pp. 288–300. DOI: 10.1016/j.neuropsychologia.2015.07.008
- Khosravani S., Buchanan J., Johnson M.D., Konczak J. Effect of Neck Botulinum Neurotoxin Injection on Proprioception and Somatosensory-Motor Cortical Processing in Cervical Dystonia. Neurorehabil Neural Repair, 2020, vol. 34 (4), pp. 309–320. DOI: 10.1177/1545968320905799
- Kroneberg D., Plettig P., Schneider G.H., Kühn A.A. Motor Cortical Plasticity Relates to Symptom Severity and Clinical Benefit from Deep Brain Stimulation in Cervical Dystonia. Neuromodulation, 2018, vol. 21 (8), pp. 735–740. DOI: 10.1111/ner.12690
- J Neural Transm (Vienna), 2021, vol. 128 (4), pp. 395–404. Published online 2021 Feb 19. DOI: 10.1007/s00702-021-02314-2
- Klein C., Lohmann K., Marras C., Münchau A. Hereditary Dystonia Overview. In: Gene Reviews. University of Washington, Seattle, 2018.
- Tomić A., Agosta F., Sarasso E. et al. Brain structural changes in focal dystonia-what about task specificity? A multimodal MRI study. Mov Disord, 2020. DOI: 10.1002/mds.28304
- van der Meer J., Beukers R., van der Salm S. et al. White matter abnormalities in gene-positive myoclonus-dystonia. Mov Disord, 2012, vol. 27, pp. 1666–1672. DOI: 10.1002/MDS.25128
- Horisawa S., Taira T., Goto S., Ochiai T., Nakajima T. Long-term improvement of musician’s dystonia after stereotactic ventro-oral thalamotomy. AnnNeurol, 2013, vol. 74 (5), pp. 648–654. DOI: 10.1002/ana.2
- Rittiner J.E. et al. Functional genomic analyses of Mendelian and sporadic disease identify impaired eIF2alpha signaling as a generalizable mechanism 3877 for dystonia. Neuron, 2016, vol. 92, pp. 1238–1251.
- Gonzalez-Alegre P. Advances in molecular and cell biology of dystonia: Focus on torsin A. Neurobiol Dis, 2019, vol. 127, pp. 233–241. DOI: 10.1016/j.nbd.2019.03.007
- Bragg D.C. et al. Molecular pathways in dystonia. Neurobiol Dis, 2011, vol. 42, pp. 136–147. DOI: 10.1016/j.nbd.2010.11.015
- LeDoux M.S. et al. Emerging molecular pathways for dystonia. Mov Disord, 2013, vol. 15, pp. 968–981. DOI: 10.1002/mds.25547
- Nibbeling E.A. et al. Using the shared genetics of dystonia and ataxia to unravel the Weisheit C.E. et al. 2018. Inherited dystonias: clinical features and molecular pathways. Handb Clin Neurol. 147, 241-254eir pathogenesis. Neurosci Biobehav Rev, 2017, vol. 75, pp. 22–39. DOI: 10.1016/j.neubiorev.2017.01.033
- Weisheit C.E. et al. Inherited dystonias: clinical features and molecular pathways. Handb Clin Neurol, 2018, vol. 147, pp. 241–254. doi: 10.1016/B978-0-444-63233-3.00016-6
- Balint B. et al. Dystonia. Nat Rev Dis Primers, 2018, vol. 4, p. 25. DOI: 10.1038/s41572-018-0023-6
- Thompson V.B. et al. Convergent mechanisms in etiologically-diverse dystonias. Expert Opin Ther Targets, 2011, vol. 15, pp. 1387–1403. DOI: 10.1517/14728222.2011.641533
- Prudente C.N. et al. Dystonia as a network disorder: what is the role of the cerebellum? Neuroscience, 2014, vol. 260, pp. 23–35. DOI: 10.1016/j.neuroscience.2013.11.062
- Bandmann O. et al. Wilson’s disease and other neurological copper disorders. Lancet Neurol, 2015, vol. 14, pp. 103–113. DOI: 10.1016/S1474-4422(14)70190-5
- Riley L.G. et al. A SLC39A8 variant causes manganese deficiency, and glycosylation and mitochondrial disorders. J Inherit Metab Dis, 2017, vol. 40, pp. 261–269. DOI: 10.1007/s10545-016-0010-6
- Tuschl K. et al. Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man. Am J Hum Genet, 2012, vol. 90, pp. 457-466. DOI: 10.1016/j.ajhg.2012.01.018
- Di Meo I., Tiranti, V. Classification and molecular pathogenesis of NBIA syndromes. Eur J Paediatr Neurol, 2018, vol. 22, pp. 272–284. DOI: 10.1016/j.ejpn.2018.01.008
- Tello C. et al. On the complexity of clinical and molecular bases of neurodegeneration with brain iron accumulation. Clin Genet, 2018, vol. 93, pp. 731–740. DOI: 10.1111/cge.13057
- Charlesworth G. et al. Mutations in HPCA cause autosomal-recessive primary isolated dystonia. Am J Hum Genet, 2015, vol. 96, pp. 657–665. DOI: 10.1016/j.ajhg.2015.02.007
- Tian J. et al. Whole-exome sequencing for variant discovery in blepharospasm. Mol Genet Genomic Med. inpress., 2018. DOI: 10.1002/mgg3.411
- Wassenberg T. et al. Consensus guideline for the diagnosis and treatment of aromatic l-amino acid decarboxylase (AADC) deficiency. Orphanet J Rare Dis, 2017, vol. 12 (1), p. 12. DOI: 10.1186/s13023-016-0522-z
- Ozelius L.J., Hewett J.W., Page C.E. et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet, 1997, vol. 17, pp. 40–48. DOI: 10.1038/ng0997-40
- Segawa M., Nomura Y., Nishiyama N. Autosomal dominant guanosine triphosphate cyclohydrolase I deficiency (Segawa disease). Ann Neurol, 2003, vol. 54 (6), pp. S32–45. DOI: 10.1002/ana.10630
- Zimprich A., Grabowski M., Asmus F. et al. Mutations in the gene encoding ε-sarcoglycan cause myoclonus-dystonia syndrome. Nat Genet, 2001, vol. 29, pp. 66–69. DOI: 10.1038/ng709
- Makino S., Kaji R., Ando S. et al. Reduced neuron-specific expression of the TAF1 gene is associated with X-linked dystonia-parkinsonism. Am J Hum Genet, 2007, vol. 80, pp. 393–406. DOI: 10.1086/512129
- Orlova O.R. Focal dystonia: modern approaches to diagnosis and possibilities of botulinum therapy. Nervnye bolezni, 2016, no. 4 (in Russ.), available at: https://cyberleninka.ru/article/n/fokalnye-distonii-sovremennye-podhody-k-diagnostike-i-vozmozhnosti-botulinoterapii (accessed on: 25.04.2023)
- Nodel’ M.R., Saloukhina N.I., Tolmacheva V.A. Influence of non-motor disorders on the quality of life of patients with cervical muscular dystonia. Nevrologiya, neyropsikhiatriya, psikhosomatika, 2022, no. 14 (3), pp. 19–25 (in Russ.). Doi: 10.14412/2074-2711-2022-3-19-25