Differential diagnosis of community-acquired pneumonia in children (part 2). Possibilities of laboratory and instrumental examination
M.R. GATAULLIN1, S.V. KHALIULLINA2, V.A. ANOKHIN2, G.S. SHAIKHIEVA1, V.A. POZDNYAK2, D.E. DOLOVSKOVA1
1Republican Clinical Hospital for Infectious Diseases named after Prof. A.F. Agafonov, Kazan
2Kazan State Medical University, Kazan
Contact details:
Khaliullina S.V. — MD, Professor of the Department of Pediatric Infections
Address: 49 Butlerov St., 420012 Kazan, Russian Federation, tel.: +7 (843) 267-80-06, e-mail: svekhal@mail.ru
The search for clinical and laboratory markers specific for different pathogens of community-acquired pneumonia (CAP) has been going on for a long time. Researchers attempt to assess the diagnostic value of clinical tests for the early diagnosis of pneumonia and its etiological variants, but no combination of signs has shown a high level of reliability so far. In this situation, specific diagnostic methods become especially valuable, such as instrumental, laboratory, biochemical, microbiological, molecular genetic, etc. However, there are still many pitfalls; etiological studies have a number of limitations. For example, a microbial culture isolated from the blood of children with CAP can indicate a specific etiology of the disease, but has generally low sensitivity. Samples of expectorated sputum obtained directly from the respiratory system have a fairly high sensitivity, but can also be positive in asymptomatic carriers. Induced sputum demonstrates greater specificity, but it is technically difficult to collect, the technique requiring special equipment. Studies of aspirates of pulmonary or pleural fluid are classified as invasive procedures, which complicates their widespread use. Washings are easier to collect, but contamination with upper respiratory tract flora is also possible. Serological tests may have different sensitivity, etc. The authors attempted to assess the informativeness of various laboratory and instrumental diagnostic methods based on literature data.
Key words: community-acquired pneumonia, laboratory / instrumental diagnostics, differential diagnosis, children.
REFERENCES
- Rueda Z.V., Aguilar Y., Maya M.A. et al. Etiology and the challenge of diagnostic testing of community-acquired pneumonia in children and adolescents. BMC Pediatr, 2022, vol. 22, p. 169. DOI: 10.1186/s12887-022-03235-z
- Rudan I., O’Brien K.L., Nair H. et al. Epidemiology and etiology of childhood pneumonia in 2010: estimates of incidence, severe morbidity, mortality, underlying risk factors and causative pathogens for 192 countries. J. Glob. Health, 2013, vol. 3 (1), p. 010401. DOI: 10.7189/jogh.03.010401
- Yun K.W. Community-acquired pneumonia in children: updated perspectives on its etiology, diagnosis, and treatment. Clin. Exp. Pediatr, 2024, vol. 67 (2), pp. 80–89. DOI: 10.3345/cep.2022.01452
- Integrated management of childhood illness: conclusions. WHO division of child health and development. Bull. World Health Organ, 1997, vol. 75 (Suppl 1), pp. 119–128.
- Davies H.D. Community-acquired pneumonia in children. Paediatr. Child Health., 2003, vol. 8 (10), pp. 616–619. DOI: 10.1093/pch/8.10.616
- Palafox M., Guiscafré H., Reyes H. et al. Diagnostic value of tachypnoea in pneumonia defined radiologically. Arch. Dis. Child, 2000, vol. 82 (1), pp. 41–45. DOI: 10.1136/adc.82.1.41
- Taylor J.A., Del Beccaro M., Done S. et al. Establishing clinically relevant standards for tachypnea in febrile children younger than 2 years. Arch. Pediatr. Adolesc. Med, 1995, vol. 149 (3), pp. 283–287. DOI: 10.1001/archpedi.1995.02170150063011
- Rees C.A., Basnet S., Gentile A. et al. An analysis of clinical predictive values for radiographic pneumonia in children. BMJ Glob. Health, 2020, vol. 5 (8), p. e002708. DOI: 10.1136/bmjgh-2020-002708
- Lynch T., Platt R., Gouin S. et al. Can we predict which children with clinically suspected pneumonia will have the presence of focal infiltrates on chest radiographs? Pediatrics, 2004, vol. 113 (3 Pt 1), p. e186–e189. DOI: 10.1542/peds.113.3.e186
- Florin T.A., Ambroggio L., Brokamp C. et al. Reliability of examination findings in suspected community-acquired pneumonia. Pediatrics, 2017, vol. 140 (3), pp. e20170310. DOI: 10.1542/peds.2017-0310
- Chan F.Y.Y., Lui C.T., Tse C.F. et al. Decision rule to predict pneumonia in children presented with acute febrile respiratory illness. Am. J. Emerg. Med, 2020, vol. 38 (12), pp. 2557–2563. DOI: 10.1016/j.ajem.2019.12.041
- Goodman D., Crocker M.E., Pervaiz F. et al. Challenges in the diagnosis of paediatric pneumonia in intervention field trials: recommendations from a pneumonia field trial working group. Lancet Respir. Med, 2019, vol. 7 (12), pp. 1068–1083. DOI: 10.1016/S2213-2600(19)30249-8
- Bradley J.S., Byington C.L., Shah S.S. et al. The management of community-acquired pneumonia in infants and children older than 3 months of age: clinical practice guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America. Clin. Infec. Dis, 2011, vol. 53 (7), pp. e25–e76. DOI: 10.1093/cid/cir531
- Smith D.K., Kuckel D.P., Recidoro A.M. Community-acquired pneumonia in children: rapid evidence review. Am. Fam. Physician, 2021, vol. 104 (6), pp. 618–625.
- Ministerstvo zdravookhraneniya Rossiyskoy Federatsii. Klinicheskie rekomendatsii “Pnevmoniya (vnebol’nichnaya)”, 2022 [Ministry of Health of the Russian Federation. Clinical guidelines «Pneumonia (community-acquired)», 2022], available at: https://cr.minzdrav.gov.ru/schema/714_1 (accessed on: 02.09. 2024).
- Tatochenko V.K. Community-acquired pneumonia in children — problems and solutions. Rossiyskiy vestnik perinatologii i pediatrii, 2021, vol. 66, no. 1, pp. 9–21 (in Russ.).
- Rashad M.M., Ismail Y.M., Sobeih A.A. et al. Procalcitonin, C-reactive protein and white blood cells count in children with community acquired pneumonia. Benha Med. J, 2021, vol. 38 (1), pp. 125–136. DOI: 10.21608/bmfj.2021.142187
- Ning J., Shao X., Ma Y. et al. Valuable hematological indicators for the diagnosis and severity assessment of Chinese children with community-acquired pneumonia: Prealbumin. Medicine (Baltimore), 2016, vol. 95 (47), p. e5452. DOI: 10.1097/MD.0000000000005452
- Zheng H.H., Xiang Y., Wang Y. et al. Clinical value of blood related indexes in the diagnosis of bacterial infectious pneumonia in children. Transl. Pediatr, 2022, vol. 11 (1), pp. 114–119. DOI: 10.21037/tp-21-568
- Güven D., Kışlal F.M. The diagnostic value of complete blood parameters in determining the severity of community-acquired pneumonia in children. J. Health Sci. Med, 2022, vol. 5 (6), pp. 1592–1599. DOI: 10.32322/jhsm.1171374
- Kozyrev E.A., Babachenko I.V., Orlov A.V. et al. Platelet indices in community-acquired pneumonia in children with respiratory infections. Zhurnal infektologii, 2022, vol. 14, no. 1, pp. 60–68 (in Russ.). DOI: 10.22625/2072-6732-2022-14-1-60-68
- Kozyrev E.A. Kliniko-etiologicheskaya kharakteristika vnebol’nichnoy pnevmonii u detey: avtoreferat dis. … kan. med. nauk [Clinical and etiological characteristics of community-acquired pneumonia in children. Synopsis of dis. PhD med. sciences]. Saint Petersburg, 2023. 22 p.
- Jullien S., Richard-Greenblatt M., Casellas A. et al. Association of clinical signs, host biomarkers and etiology with radiological pneumonia in Bhutanese children. Glob. Pediatr. Health, 2022, vol. 9, p. 2333794X221078698. DOI: 10.1177/2333794X221078698
- Hoshina T., Nanishi E., Kanno S. et al. The utility of biomarkers in differentiating bacterial from non-bacterial lower respiratory tract infection in hospitalized children: difference of the diagnostic performance between acute pneumonia and bronchitis. J. Infect. Chemother, 2014, vol. 20 (10), pp. 616–620. DOI: 10.1016/j.jiac.2014.06.003
- Williams D.J., Hall M., Auger K.A. et al. Association of white blood cell count and c-reactive protein with outcomes in children hospitalized for community-acquired pneumonia. Pediatr. Infect. Dis. J, 2015, vol. 34 (7), pp. 792–793. DOI: 10.1097/INF.0000000000000724
- Gunaratnam L.C., Robinson J.L., Hawkes M.T. Systematic review and meta-analysis of diagnostic biomarkers for pediatric pneumonia. J. Pediatric Infect. Dis. Soc, 2021, vol. 10 (9), pp. 891–900. DOI:10.1093/jpids/piab043
- Ministerstvo zdravookhraneniya Rossiyskoy Federatsii. Klinicheskie rekomendatsii “Ostraya respiratornaya virusnaya infektsiya (ORVI)”, 2022 [Ministry of Health of the Russian Federation. Clinical guidelines «Acute respiratory viral infection (ARVI)», 2022], available at: https://cr.minzdrav.gov.ru/schema/25_2 (accessed on: 02.09. 2024).
- Korppi M. Non-specific host response markers in the differentiation between pneumococcal and viral pneumonia: what is the most accurate combination? Pediatr Int, 2004, vol. 46 (5), pp. 545–550. DOI: 10.1111/j.1442-200x.2004.01947.x
- Korppi M., Remes S., Heiskanen-Kosma T. Serum procalcitonin concentrations in bacterial pneumonia in children: a negative result in primary healthcare settings. Pediatr Pulmonol, 2003, vol. 35 (1), pp. 56–61. DOI: 10.1002/ppul.10201
- Shah S.S., Florin T.A., Ambroggio L. Procalcitonin in childhood pneumonia. J. Pediatric Infect. Dis. Soc, 2018, vol. 7 (1), pp. 54–55. DOI: 10.1093/jpids/piw095
- Ayaz N., Ilyas A., Iqbal A. et al. Evaluating the diagnostic accuracy of C-reactive protein in diagnosing pneumonia in children using blood culture as the gold standard: C-reactive protein in diagnosing pneumonia. Pakistan J. Health Sci, 2024, vol. 5 (8), pp. 93–97 DOI: 10.54393/pjhs.v5i08.1822
- Stockmann C., Ampofo K., Killpack J. et al. Procalcitonin accurately identifies hospitalized children with low risk of bacterial community-acquired pneumonia. J. Pediatric Infect. Dis. Soc, 2018, vol. 7 (1), pp. 46–53. DOI: 10.1093/jpids/piw091
- Toikka P., Irjala K., Juvén T. et al. Serum procalcitonin, C-reactive protein and interleukin-6 for distinguishing bacterial and viral pneumonia in children. Pediatr Infect. Dis. J, 2000, vol. 19 (7), pp. 598–602. DOI: 10.1097/00006454-200007000-00003
- Kamat I.S., Ramachandran V., Eswaran H. et al. Procalcitonin to distinguish viral from bacterial pneumonia: a systematic review and meta-analysis. Clin. Infect. Dis, 2020, vol. 70 (3), pp. 538–542. DOI: 10.1093/cid/ciz545
- Baranov A.A., Kozlov R.S., Namazova-Baranova L.S. et al. Modern approaches to the management of children with community-acquired pneumonia. Pediatricheskaya farmakologiya, 2023, vol. 20, no. 1, pp. 17–41 (in Russ.). DOI: 10.15690/pf.v20i1.2534
- Flood R.G., Badik J., Aronoff S.C. The utility of serum C-reactive protein in differentiating bacterial from nonbacterial pneumonia in children: a meta-analysis of 1230 children. Pediatric Infect. Dis. J, 2008, vol. 27 (2), pp. 95–99.
- Bhuiyan M.U., Blyth C.C., West R. et al. Combination of clinical symptoms and blood biomarkers can improve discrimination between bacterial or viral community-acquired pneumonia in children. BMC Pulm. Med, 2019, vol. 19 (1), pp. 71. DOI: 10.1186/s12890-019-0835-5
- Dudognon D., Levy C., Chalumeau M. et al. Diagnostic accuracy of routinely available biomarkers to predict bacteremia in children with community-acquired pneumonia: a secondary analysis of the GPIP/ACTIV pneumonia study in France, 2009–2018. Front. Pediatrics, 2021, vol. 9, pp. 684628. DOI: 10.3389/fped.2021.684628
- Esposito S., Tagliabue C., Picciolli I. et al. Procalcitonin measurements for guiding antibiotic treatment in pediatric pneumonia. Respir. Med, 2011, vol. 105 (12), pp. 1939–1945. DOI: 10.1016/j.rmed.2011.09.003
- Florin T.A. Differentiating bacterial from viral etiologies in pediatric community-acquired pneumonia: the quest for the Holy Grail continues. J. Pediatric Infect. Dis. Soc, 2021, vol. 10 (12), pp. 1047–1050. DOI: 10.1093/jpids/piab034
- Tanrıverdi H., Örnek T., Erboy F. et al. Comparison of diagnostic values of procalcitonin, C-reactive protein and blood neutrophil/lymphocyte ratio levels in predicting bacterial infection in hospitalized patients with acute exacerbations of COPD. Wien Klin Wochenschr, 2015, vol. 127 (19–20), pp. 756–763. DOI: 10.1007/s00508-014-0690-6
- Moulin F., Raymond J., Lorrot M. et al. Procalcitonin in children admitted to hospital with community acquired pneumonia. Arch. Dis. Child, 2001, vol. 84 (4), pp. 332–336. DOI: 10.1136/adc.84.4.332
- Wang H., Li D., Wang Y. et al. Clinical significance of serum S100 calcium-binding protein A12 concentrations in patients with community-acquired pneumonia. J. Int. Med. Res, 2023, vol. 51 (8), pp. 3000605231191021. DOI: 10.1177/03000605231191021
- Golubeva M.V., Rakitina E.N., Minaev S.V. et al. Predictive role of bactericidal/permeability-increasing protein and S-reactive protein in a personalized approach to the treatment of children with acute pneumonia. Med. News of North Caucasus, 2021, vol. 16 (2), pp. 144–148. DOI: 10.14300/mnnc.2021.16032
- Dudina K.R., Kutateladze M.M., Znoyko O.O. et al. Clinical significance of markers of acute inflammation in infectious pathology. Kazanskiy meditsinskiy zhurnal, 2014, vol. 95, no. 6, pp. 909–915 (in Russ.). DOI: 10.17816/KMJ2003
- Wagner K.K.L., Corda D., Steinmayr A. et al. CRP/Neopterin ratio and neuropsychiatric symptoms in patients with different forms of pneumonia: results of a pilot study. Microorganisms, 2024, vol. 12 (6), p. 1099. DOI: 10.3390/microorganisms12061099
- Garg M., Prabhakar N., Gulati A. et al. Spectrum of imaging findings in pulmonary infections. Part 1: Bacterial and viral. Pol. J. Radiol, 2019, vol. 84, pp. e205–e213. DOI: 10.5114/pjr.2019.85812
- Swingler G.H. Radiologic differentiation between bacterial and viral lower respiratory infection in children: a systematic literature review. Clin. Pediatr. (Phila), 2000, vol. 39 (11), pp. 627–633. DOI: 10.1177/000992280003901101.2000
- Robles A., Gil A., Pascual V. et al. Viral vs bacterial community-acquired pneumonia: Radiologic features. Eur. Resp. J, 2011, vol. 38 (55), pp. 2507.
- Savenkova M.S., Savenkov M.P., Samitova E.R. et al. Mycoplasma infection: clinical forms, course features, diagnostic errors. Voprosy sovremennoy pediatrii, 2013, vol. 12, no. 6, pp. 108–114 (in Russ.). DOI: 10.15690/vsp.v12i6.884
- Morikawa K., Okada F., Ando Y. et al. Meticillin-resistant Staphylococcus aureus and meticillin-susceptible S. aureus pneumonia: comparison of clinical and thin-section CT findings. Br. J. Radiol, 2012, vol. 85 (1014), pp. e168–e175. DOI: 10.1259/bjr/65538472
- Dawson K.P., Long A., Kennedy J. et al. The chest radiograph in acute bronchiolitis. J. Paediatr. Child Health, 1990, vol. 26 (4), pp. 209–211. DOI: 10.1111/j.1440-1754.1990.tb02431.x
- Koo H.J., Lim S., Choe J. et al. Radiographic and CT features of viral pneumonia. Radiographics, 2018, vol. 38 (3), pp. 719–739. DOI: 10.1148/rg.2018170048
- Koo H.J., Choi S.H., Sung H. et al. Radio graphics update: radiographic and CT features of viral pneumonia. Radiographics, 2020, vol. 40 (4), pp. E8–E15. DOI: 10.1148/rg.2020200097
- Wang Y., Dong C., Hu Y. et al. Temporal changes of CT findings in 90 patients with COVID-19 pneumonia: a longitudinal study. Radiology, 2020, vol. 296 (2), pp. E55–E64. DOI: 10.1148/radiol.2020200843
- Bernheim A., Mei X., Huang M. et al. Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. Radiology, 2020, vol. 295 (3), pp. 200463. DOI: 10.1148/radiol.2020200463
- Kloth C., Forler S., Gatidis S. et al. Comparison of chest-CT findings of Influenza virus-associated pneumonia in immunocompetent vs. immunocompromised patients. Eur. J. Radiol, 2015, vol. 84 (6), pp. 1177–1183. DOI: 10.1016/j.ejrad.2015.02.014
- Mayer J.L., Lehners N., Egerer G. et al. CT-morphological characterization of respiratory syncytial virus (RSV) pneumonia in immune-compromised adults. Rofo, 2014, vol. 186 (7), pp. 686–692. DOI: 10.1055/s-0033-1356353
- Tan D., Fu Y., Xu J. et al. Severe adenovirus community-acquired pneumonia in immunocompetent adults: chest radiographic and CT findings. J. Thorac. Dis, 2016, vol. 8 (5), pp. 848–854. DOI: 10.21037/jtd.2016.03.38
- Virkki R., Juven T., Rikalainen H. et al. Differentiation of bacterial and viral pneumonia in children. Thorax, 2002, vol. 57 (5), pp. 438–441. DOI: 10.1136/thorax.57.5.438
- Gu X., Pan L., Liang H. et al. Classification of bacterial and viral childhood pneumonia using deep learning in Chest Radiography. Proceedings of the 3rd International Conference on multimedia and image processing (ICMIP ’18), 2018, pp. 88–93. DOI: 10.1145/3195588.3195597
- Ayan E., Karabulut B., Ünver H.M. Diagnosis of pediatric pneumonia with ensemble of deep convolutional neural networks in Chest X-ray images. Arab. J. Sci. Eng, 2022, vol. 7 (2), pp. 2123–2139. DOI: 10.1007/s13369-021-06127-z
- Ibrahim A.U., Ozsoz M., Serte S. et al. Pneumonia classification using deep learning from chest X-ray images during COVID-19. Cognit. Comput. Published online, 2021, vol. 4, pp. 1–13. DOI: 10.1007/s12559-020-09787-5
- Pochepnia S., Grabczak E.M., Johnson E. et al. Imaging in pulmonary infections of immunocompetent adult patients. Breathe, 2024, vol. 20, pp. 230186. DOI: 10.1183/20734735.0186-2023
- Long L., Zhao H.T., Zhang Z.Y. et al. Lung ultrasound for the diagnosis of pneumonia in adults: A meta-analysis. Medicine (Baltimore), 2017, vol. 96 (3), pp. e5713. DOI: 10.1097/MD.0000000000005713
- Chavez M.A., Shams N., Ellington L.E. et al. Lung ultrasound for the diagnosis of pneumonia in adults: a systematic review and meta-analysis. Respir. Res, 2014, vol. 15 (1), p. 50. DOI: 10.1186/1465-9921-15-50
- Stoicescu E.R., Iacob R., Ilie A.C. et al. Differentiating viral from bacterial pneumonia in children: the diagnostic role of lung ultrasound-a prospective observational study. Diagnostics (Basel), 2024, vol. 14 (5), p. 480. DOI: 10.3390/diagnostics14050480
- Fritz C.Q., Edwards K.M., Self W.H. et al. Prevalence, risk factors, and outcomes of bacteremic pneumonia in children. Pediatrics, 2019, vol. 144 (1), p. e20183090. DOI: 10.1542/peds.2018-3090
- Iroh Tam P.Y., Bernstein E., Ma X. et al. Blood culture in evaluation of pediatric community-acquired pneumonia: a systematic review and meta-analysis. Hosp. Pediatr, 2015, vol. 5 (6), pp. 324–336. DOI: 10.1542/hpeds.2014-0138
- Neuman M.I., Hall M., Lipsett S.C. et al. Utility of blood culture among children hospitalized with community-acquired pneumonia. Pediatrics, 2017, vol. 140 (3), pp. e20171013. DOI: 10.1542/peds.2017-1013
- Galeano F., Estigarribia L., Sanabria G. et al. Duration of fever in pediatric patients hospitalized with Community Acquired Pneumonia in a reference center for infectious diseases. Open J. Tropical Med, 2020, vol. 4 (1), pp. 023–027. DOI: 10.17352/ojtm.000016
- Resti M., Moriondo M., Cortimiglia M. et al. Community-acquired bacteremic pneumococcal pneumonia in children: diagnosis and serotyping by real-time polymerase chain reaction using blood samples. Clin. Infect. Dis, 2010, vol. 51 (9), pp. 1042–1049. DOI: 10.1086/656579
- Miners L., Huntington S., Lee N. et al. An economic evaluation of two PCR-based respiratory panel assays for patients admitted to hospital with community-acquired pneumonia (CAP) in the UK, France and Spain. BMC Pulm Med, 2023, vol. 23 (220), pp. 1–10. DOI: 10.1186/s12890-023-02516-2
- Templeton K.E., Scheltinga S.A., van den Eeden W.C. et al. Improved diagnosis of the etiology of community-acquired pneumonia with real-time polymerase chain reaction. Clin. Infect. Dis, 2005, vol. 41 (3), pp. 345–351. DOI: 10.1086/431588
- Eber E., Midulla F. ERS handbook of paediatric respiratory medicine. Sheffield: European Respiratory Society, 2013. 719 p.
- Shen F., Sergi C. Sputum Analysis [Internet]. Treasure Island (FL): StatPearls Publishing, 2024, available at: https://www.ncbi.nlm.nih.gov/books/NBK563195/
- Murdoch D.R., Morpeth S.C., Hammitt L.L. et al. Microscopic analysis and quality assessment of induced sputum from children with pneumonia in the PERCH study. Clin. Infect. Dis, 2017, vol. 64, pp. 271–279. DOI: 10.1093/cid/cix083
- Markussen D.L., Ebbesen M., Serigstad S. et al. The diagnostic utility of microscopic quality assessment of sputum samples in the era of rapid syndromic PCR testing. Microbiol. Spectr, 2023, vol. 11 (5), p. e0300223. DOI: 10.1128/spectrum.03002-23
- Musher D.M., Montoya R., Wanahita A. Diagnostic value of microscopic examination of Gram-stained sputum and sputum cultures in patients with bacteremic pneumococcal pneumonia. Clin. Infect. Dis, 2004, vol. 39 (2), pp. 165–169. DOI: 10.1086/421497
- García-Vázquez E., Marcos M.A., Mensa J. et al. Assessment of the usefulness of sputum culture for diagnosis of community-acquired pneumonia using the PORT predictive scoring system. Arch. Intern. Med, 2004, vol. 164 (16), pp. 1807–1811. DOI: 10.1001/archinte.164.16.1807
- Yang S., Lin S., Khalil A. et al. Quantitative PCR assay using sputum samples for rapid diagnosis of pneumococcal pneumonia in adult emergency department patients. J. Clin. Microbiol, 2005, vol. 43 (7), pp. 3221–3226. DOI: 10.1128/JCM.43.7.3221-3226.2005
- Shi T., McLean K., Campbell H. et al. Aetiological role of common respiratory viruses in acute lower respiratory infections in children under five years: A systematic review and meta-analysis. J. Glob. Health, 2015, vol. 5 (1), p. 010408. DOI: 10.7189/jogh.05.010408
- File T.M. Jr. New diagnostic tests for pneumonia: what is their role in clinical practice? Clin. Chest. Med, 2011, vol. 32 (3), pp. 417–430. DOI: 10.1016/j.ccm.2011.05.011
- Mardian Y., Menur Naysilla A., Lokida D. et al. Approach to identifying causative pathogens of community-acquired pneumonia in children using culture, molecular, and serology tests. Front. Pediatr, 2021, vol. 9, p. 629318. DOI: 10.3389/fped.2021.629318
- Baggett H.C., Watson N.L., Deloria Knoll M. et al. Density of upper respiratory colonization with Streptococcus pneumoniae and its role in the diagnosis of pneumococcal pneumonia among children aged <5 years in the PERCH study. Clin. Infect. Dis, 2017, vol. 64 (3), pp. 317–327. DOI: 10.1093/cid/cix100
- Park D.E., Baggett H.C., Howie S.R.C. et al. Colonization density of the upper respiratory tract as a predictor of pneumonia-Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus, and Pneumocystis jirovecii. Clin. Infect. Dis, 2017, vol. 64 (3), pp. 328–336. DOI: 10.1093/cid/cix104
- Nathan A.M., Teh C.S.J., Jabar K.A. et al. Bacterial pneumonia and its associated factors in children from a developing country: A prospective cohort study. PLoS ONE, 2020, vol. 15, p. e0228056. DOI: 10.1371/journal.pone.0228056
- Markussen D.L., Serigstad S., Ritz C. et al. Diagnostic stewardship in community-acquired pneumonia with syndromic molecular testing: a randomized clinical trial. JAMA Netw Open, 2024, vol. 7 (3), p. e240830. DOI: 10.1001/jamanetworkopen.2024.0830
- Wang L., Lu S., Guo Y. et al. Comparative study of diagnostic efficacy of sputum and bronchoalveolar lavage fluid specimens in community-acquired pneumonia children treated with fiberoptic bronchoscopy. BMC Infect. Dis, 2023, vol. 23 (565), pp. 1–8. DOI: 10.1186/s12879-023-08522-3
- Falguera M., López A., Nogués A. et al. Evaluation of the polymerase chain reaction method for detection of Streptococcus pneumoniae DNA in pleural fluid samples. Chest, 2002, vol. 122 (6), pp. 2212–2216. DOI: 10.1378/chest.122.6.2212
- Don M., Fasoli L., Paldanius M. et al. Aetiology of community-acquired pneumonia: serological results of a paediatric survey. Scand. J. Infect. Dis, 2005, vol. 37 (11–12), pp. 806–812. DOI: 10.1080/00365540500262435
- Kashyap B., Kumar S., Sethi G.R. et al. Comparison of PCR, culture & serological tests for the diagnosis of Mycoplasma pneumoniae in community-acquired lower respiratory tract infections in children. Indian J. Med. Res, 2008, vol. 128 (2), pp. 134–139.
- Li Q.L., Dong H.T., Sun H.M. et al. The diagnostic value of serological tests and real-time polymerase chain reaction in children with acute Mycoplasma pneumoniae infection. Ann. Transl. Med, 2020, vol. 8 (6), pp. 386. DOI: 10.21037/atm.2020.03.121
- Murdoch D.R., O’Brien K.L., Driscoll A.J. et al. Laboratory methods for determining pneumonia etiology in children. Clin. Infect. Dis, 2012, vol. 54 (2), pp. 146–152. DOI: 10.1093/cid/cir1073
- Smith M.D., Derrington P., Evans R. et al. Rapid diagnosis of bacteremic pneumococcal infections in adults by using the Binax NOW Streptococcus pneumoniae urinary antigen test: a prospective, controlled clinical evaluation. J. Clin. Microbiol, 2003, vol. 41 (7), pp. 2810–2813. DOI: 10.1128/JCM.41.7.2810-2813.2003
- Gutiérrez F., Masiá M., Rodríguez J.C. et al. Evaluation of the immunochromatographic Binax NOW assay for detection of Streptococcus pneumoniae urinary antigen in a prospective study of community-acquired pneumonia in Spain. Clin. Infect. Dis, 2003, vol. 36 (3), pp. 286–292. DOI: 10.1086/345852
- Farnaes L., Wilke J., Ryan Loker K. et al. Community-acquired pneumonia in children: cell-free plasma sequencing for diagnosis and management. Diagn. Microbiol. Infect. Dis, 2019, vol. 94 (2), pp. 188–191. DOI: 10.1016/j.diagmicrobio.2018.12.016
- Wallihan R.G., Suárez N.M., Cohen D.M. et al. Molecular distance to health transcriptional score and disease severity in children hospitalized with community-acquired pneumonia. Front. Cell Infect. Microbiol, 2018, vol. 8, p. 382. DOI: 10.3389/fcimb.2018.00382