Coronavirus infection in children vaccinated against respiratory infections
I.N. CHEREZOVA, N.KH. GABITOVA, YU.A. SHARIFULLINA, A.F. MUSTAFINA
Kazan State Medical University of the Ministry of Health of Russia, Kazan
Contact details:
Gabitova N.Kh. — PhD (medicine), Associate Professor of the Department of Hospital Pediatrics
Address: 140 Orenburgskiy trakt, Kazan, Russian Federation, 420059, tel.: +7 (843) 269-67-69, e-mail: borismk1@rambler.ru
The article presents the differences in the course of coronavirus infection in children depending on vaccination against respiratory infections (influenza and pneumococcus). It was found that in the absence of vaccination against respiratory infections, severe and moderate course of COVID-19 infection is observed more often. Vaccination against respiratory infections prevents the development of a severe course of the new coronavirus infection. It was noted that the pneumococcal vaccine does not create protection against COVID-19, but it prevents superinfection and the development of severe forms of bacterial pneumonia. The flu vaccine forms early cross-immunity between influenza and coronavirus infection, thus preventing the development of a severe course of the disease.
Key words: chidren, coronavirus, immunity, vaccination.
REFERENCES
- Zvereva N.N., Sayfullin M.A., Rtishchev A.Yu. et al. Coronavirus infection in children. Pediatriya im. G.N. Speranskogo, 2020, vol. 99, no. 2, pp. 270–278 (in Russ.).
- Liu J., Zheng X., Qiaoxia Tong, Li W. et al. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS‐CoV, MERS‐CoV, and 2019‐nCoV. J. Med Virol, 2020, vol. 92 (5), rr. 491–494. Published online 2020 Feb 21. DOI: 10.1002/jmv.25709 PMID: 32056249
- Su S., Wong G., Shi W., Liu J., Lai A. S., Zhou J.et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol, 2016, vol. 24 (6), rr. 490-502. DOI: 10.1016/j.tim.2016.03.003
- Shatunova P.O., Bykov A.S., Svitich O.A., Zverev V.V. Angiotensin-converting enzyme 2. Approaches to pathogenetic therapy of COVID-19. Zhurnal mikrobiologii, epidemiologii i immunobiologii, 2020, vol. 97, no. 4, pp. 339–345 (in Russ.). DOI: 10.36233/0372-9311-2020-97-4-6
- He J., Tao H., Yan Y., Huang S.Y., Xiao Y. Molecular Mechanism of Evolution and Human infection with SARS-CoV-2. Viruses, 2020, vol. 12 (4), r. 428. DOI: 10.3390/v1040428
- Monto A.S., Medical reviews. Coronaviruses. The Yale Jornal of Biology and Medicine, 1974, vol. 47 (4), r. 234.
- Namazova-Baranova L.S., Baranov A.A. COVID-19 and children. Pul’monologiya, 2020, vol. 30, no. 5, pp. 609–628 (in Russ.). DOI: 10.18093/0869-0189-2020-30-5-609-628
- Goldstein E., Lipsitch M. Temporal rise in the proportion of younger adults and older adolescents among coronavirus disease (COVID-19) cases following the introduction of physical distancing measures, Germany, March to April 2020. Euro Surveill, 2020, vol. 25 (17). 2000596. DOI: 10.2807/1560- 7917.ES.2020.25.17.2000596
- Lu X., Zhang L., Du H. et al. SARS-CoV-2 infection in children. N Engl J Med, 2020, vol. 18. DOI: 1056/NEJMc2005073
- Kostinov M.P. Immunopathogenic properties of SARS-CoV-2 as a basis for the choice of pathogenetic therapy. Immunologiya, 2020, vol. 41, no. 1, pp. 83–91 (in Russ.).
- Kostinov M.P. Osnovy immunoreabilitatsii pri novoy koronavirusnoy infektsii (COVID-19): posobie dlya vrachey [Basics of immunorehabilitation in case of a new coronavirus infection (COVID-19): a guide for doctors]. Moscow: gruppa MDV, 2020. 112 p.
- Salman S., Salem M.L. Routine immunization may protect childhood against COVID-19. Med Hypoteses, 2020, vol. 25 (1-serial number 5), pp. 11–13. DOI: 10.21608/jcbr.2020.mar 25 DOI: 10.1016/jmehy.2020.109689 PMID:32240961
- Gold J. MMR vaccine appears to confer strong protection from COVID-19: few deaths from SARS-CoV-2 in highly vaccinated populations, 2020. DOI: 10.13140/RG.2.2.32128.25607
- Franklin R., Young A., Neumann B. et al. Homologous protein domains in SARS-CoV-2 and measles, mumps and rubella viruses: preliminary evidence that MMR vaccine might provide protection against COVID-19. BMJ Yale, 2020. DOI: 10.1101/2020.04.10.20053207
- Arts R.J.W., Netea M.G. Epigenetic rewiring of monocytes in BCG vaccination. In: The value of BCG and TNF in autoimmunity (Second Edition). ELSEVIER Academic Press, 2018. Chapter 8. Rr. 109–120. DOI: 10.1016/B978-0-12-814603-3.00008-2
- Bekkering S., Blok B.A., Josten Leo A.B, Ricsen N.P. et al. In vitro experimental model of trained innate immunity in human primary monocytes. J. ASM Clin. And Vaccine Immunol, 2016, vol. 23 (12). DOI: 10.1128/CVI.00349-16
- O’Neil L.A.J., Netea M.G. BCG-induced trained immunity: can it offer protection against COVID-19? Nat Rev Immunol, 2020, no. 20, rr. 335–337. DOI: 10.1038/s41577-020-0337-y
- Angelidou A., Diray-Arce J., Giulia Conti M. et al. BCG as a case study for precision vaccine development: lessons from vaccine heterogeneity, trained immunity, and immune ontogeny. Front Microbiol, 2020, vol. 11, r. 332. DOI: 10.3389/fmicb.2020.00332
- Netea M.G., Joosten L., Latz E. et al. Trained immunity: a program of innate immune memory in health and disease. Science, 2016, vol. 352 (6284), p. aaf1098. DOI: 10.1126/science.aaf1098
- Kostinov A.M., Kostinov M.P. Susceptibility to SARS-CoV-2 vaccinated against S. Pneumonia is the mechanism of non-specific action of pneumococcal vaccine. Pediatriya im. G.N. Speranskogo, 2020, vol. 19, no. 6, pp. 183–189 (in Russ.).
- Root-Bernstein R. Cross-Reactivity Between SARS-CoV-2 Proteins and Proteins in Pneumococcal Vaccines May Protect Against Symptomatic SARS-CoV-2 Disease and Death. Preprints.org, 2020. DOI: 10.20944/preprints202007.0141.v16
- Kostinov M.P. Chuchalin A.G. Prioritetnaya vaktsinatsiya protiv respiratornykh infektsiy v period pandemiiCOVID-19 i posle ee zaversheniya: posobie dlya vrachey [Priority vaccination against respiratory infections during the COVID-19 pandemic and beyond: a guide for physicians]. Moscow: Gruppa MDV, 2020. 32 p.
- Tsygankov P.V., Al’nikin A.B., Kvashe I.V. et al. Frequency of detecting positive Covid-19 markers in streets with different vaccination histories. Epidemiologiya i vaktsinoprofilaktika, 2021, vol. 20, no. 3, pp. 4–7 (in Russ.). DOI: 10.31631/2073-3046-2021-20-3-4-7
- Root-Bernstein R. Age and Location in Severity of COVID-19 Pathology: Do Lactoferrin and Pneumococcal Vaccination Explain Low Infant Mortality and Regional Differences? Bio Essays, 2020, vol. 42 (11), pp. e2000076. DOI: 10.1002/ bies.202000076
- Kharchenko E.P. Coronavirus SARS-CoV-2: features of structural proteins, contagiousness and possible immune collisions. Epidemiologiya i vaktsinoprofilaktika, 2020, vol. 19, no. 2, pp. 13–30 (in Russ.). DOI: 10.31631/2073-3046-2020-19-2-13-30
- World Health Organization. Coronavirus disease (COVID-19) advice for the public. Mythbusters, 2020, available at: https://www.who.int/emergencies/diseases/novelcoronavirus-2019/advice-for-public/myth-busters#vaccines (accessed on: 1.10.2020).
- Palacios G., Hornig M., Cisterna D., Savji N., Bussetti A.V., Kapoor V. et al. Streptococcus pneumoniae coinfection is correlated with the severity of H1N1 pandemic influenza. PLoS One, 2009, vol. 4 (12), rr. 8540. DOI: 147 10.1371/journal.pone.0008540
- Mimura K., Kimura S., Kajiwara C., Nakakubo Sho et al. Pneumococcal conjugate vaccine modulates macrophage-mediated innate immunity in pneumonia caused by Streptococcus pneumoniae following influenza. Microbes Infect, 2020, vol. 22 (8), rr. 312–321. DOI: 10.1016/j. micinf.2019.12.005.1