pm mfvt1
    • Main page
      • About journal
      • Articles. Working with contents
      • Editor-in-chief
      • Editorial Council
      • Editorial Board


      • For authors
      • Standards for formatting information
      • Reviewing
      • Politics editorial board
      • Ethics of journal publications


      • For advertisers
      • Subscription
      • About the Publishing House
      • Contact us
  • Chorioamnionitis: unresolved diagnostic issues

    Редактор | 2025, Literature reviews, Practical medicine part 23 №2. 2025 | 24 апреля, 2025

    O.N. KRAVTSOVA, M.A. IGNATIEVA, E.V. DULAEVA, E.B. EFIMKOVA

     Moscow Regional Research Institute of Obstetrics and Gynecology named after Academician V.I. Krasnopolsky, Moscow

    Contact details:

    Kravtsova O.N. — postgraduate student

    Address: 22A Pokrovka St., 101000 Moscow, Russian Federation, tel.: +7-921-342-17-87, e-mail: kozina.97@gmail.com

     Chorioamnionitis (CA) is a risk factor for obstetric and perinatal infectious complications. The diagnosis of CA is based on clinical criteria, which vary depending on the professional community. Modern microbiological methods, the amniotic fluid analysis and the diagnostic search aimed at fetal condition are promising areas for improving the CA diagnosis.

    Key words: chorioamnionitis, intraamniotic infection, vaginal microbiome, fetal inflammation response syndrome.

    REFERENCES

    1. Kim C.J., Romero R., Chaemsaithong P., Chaiyasit N. et al. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am. J. Obstet. Gynecol, 2015, no. 213, pp. 29–52. DOI: 10.1016/j.ajog.2015.08.040
    2. Jung E., Romero R., Suksai M. et al. Clinical chorioamnionitis at term: definition, pathogenesis, microbiology, diagnosis, and treatment. Am. J. Obstet. Gynecol, 2024, vol. 230 (3S), pp. 807–840. DOI: 10.1016/j.ajog.2023.02.002
    3. Romero R., Pacora P., Kusanovic J.P. et al. Clinical chorioamnionitis at term X: microbiology, clinical signs, placental pathology, and neonatal bacteremia — implications for clinical care. J. Perinat. Med, 2021, vol. 49, pp. 275–298. DOI: 10.1515/jpm-2020-0297
    4. Gibbs R.S., Blanco J.D., St Clair P.J. et al. Quantitative bacteriology of amniotic fluid from women with clinical intraamniotic infection at term. J. Infect. Dis, 1982, vol. 145 (1), pp. 1–8. DOI: 10.1093/infdis/145.1.1
    5. Newton E.R. Chorioamnionitis and intraamniotic infection. Clin. Obstet. Gynecol, 1993, vol. 36, pp. 795–808. DOI: 10.1097/00003081-199312000-00004
    6. Romero R., Chaemsaithong P., Korzeniewski S.J. et al. Clinical chorioamnionitis at term III: how well do clinical criteria perform in the identification of proven intra-amniotic infection? J. Perinat. Med, 2016, vol. 44, pp. 23–32. DOI: 10.1097/00003081-199312000-00004
    7. Zakis D.R., Paulissen E., Kornete L. et al. The evidence for placental microbiome and its composition in healthy pregnancies: A systematic review. J. Reprod. Immunol, 2022, vol. 149. 103455. DOI: 10.1016/j.jri.2021.103455
    8. Liu Y., Li X., Zhu B. et al. Midtrimester amniotic fluid from healthy pregnancies has no microorganisms using multiple methods of microbiologic inquiry. Am. J. Obstet. Gynecol, 2020, vol. 223 (2), pp. 248.e1–248.e21. DOI: 10.1016/j.ajog.2020.01.056
    9. Martin R., Makino H., Cetinyurek Y.A. et al. Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota. PLoS One, 2016, vol. 11 (6). DOI: 10.1371/journal.pone.0158498
    10. Mitchell C.M., Mazzoni C., Hogstrom L. et al. Delivery Mode Affects Stability of Early Infant Gut Microbiota. Cell Rep. Med, 2020, no. 1. DOI: 10.1016/j.xcrm.2020.100156
    11. Lamont R.F., Sobel J.D., Akins R.A. et al. The vaginal microbiome: new information about genital tract flora using molecular based techniques. BJOG, 2011, no. 118, pp. 533–549. DOI: 10.1111/j.1471-0528.2010.02840.x
    12. Romero R., Gomez-Lopez N., Winters A.D. et al. Evidence that intra-amniotic infections are often the result of an ascending invasion — a molecular microbiological study. J. Perinat. Med, 2019, no. 47, pp. 915–931. DOI: 10.1515/jpm-2019-0297
    13. Morioka I., Fujibayashi H., Enoki E. et al. Congenital pneumonia with sepsis caused by intrauterine infection of Ureaplasma parvum in a term newborn: a first case report. J. Perinatol, 2010, no. 30, pp. 359–362. DOI: 10.1038/jp.2009.145
    14. Zarochentseva N.V., Novikova S.V., Isubova I.R. et al. Risk of developing gestational complications in periodontitis in pregnant women. Voprosy prakticheskoy kol’poskopii. Genital’nye infektsii, 2022, no. 4, pp. 46–49 (in Russ.). DOI: 10.46393/27826392_2022_4_46
    15. Lee Y.L., Hu H.Y., Chou S.Y. et al. Periodontal disease and preterm delivery: a nationwide population-based co hort study of Taiwan. Sci. Rep, 2022, vol. 12 (1). DOI: 10.1038/s41598-022-07425-8
    16. Oh K.J., Lee K.A., Sohn Y.K. et al. Intraamniotic infection with genital mycoplasmas exhibits a more intense inflammatory response than intraamniotic infection with other microorganisms in patients with preterm premature rupture of membranes. Am. J. Obstet. Gynecol, 2010, no. 203, pp. 211.e1–211.8. DOI: 10.1016/j.ajog.2010.03.035
    17. Oh K.J., Romero R., Park J.Y. et al. The earlier the gestational age, the greater the intensity of the intra-amniotic inflammatory response in women with preterm premature rupture of membranes and amniotic fluid infection by Ureaplasma species. J. Perinat. Med, 2019, no. 47, pp. 516–527. DOI: 10.1515/jpm-2019-0003
    18. Novy M.J., Duffy L., Axthelm M.K. et al. Ureaplasma parvum or Mycoplasma hominis as sole pathogens cause chorioamnionitis, preterm delivery, and fetal pneumonia in rhesus macaques. Reprod. Sci, 2009, no. 16, pp. 56–70. DOI: 10.1177/1933719108325508
    19. Kelleher M.A., Liu Z., Wang X. et al. Beyond the uterine environment: a nonhuman primate model to investigate maternal-fetal and neonatal outcomes following chronic intrauterine infection. Pediatr. Res, 2017, no. 82, pp. 244–252. DOI: 10.1038/pr.2017.57
    20. Biran V., Dumitrescu A.M., Doit C. et al. Ureaplasma parvum meningitis in a full-term newborn. Pediatr. Infect. Dis J, 2010, no. 29, p. 1154. DOI: 10.1097/INF.0b013e3181f69013
    21. Goldenberg R.L., Andrews W.W., Goepfert A.R. et al. The Alabama preterm birth study: umbilical cord blood ureaplasma urealyticum and mycoplasma hominis cultures in very preterm newborn infants. Am. J. Obstet. Gynecol, 2008, no. 198, pp. 43.e1–43.e435. DOI: 10.1016/j.ajog.2007.07.033
    22. Lee S.M., Romero R., Park J.S. et al. A transcervical amniotic fluid collector: a new medical device for the assessment of amniotic fluid in patients with ruptured membranes. J. Perinat. Med, 2015, no. 43, pp. 381–389. DOI: 10.1515/jpm-2014-0276
    23. Aggarwal D., Kanitkar T., Narouz M. et al. Clinical utility and cost-effectiveness of bacterial 16S rRNA and targeted PCR based diagnostic testing in a UK microbiology laboratory network. Sci Rep, 2020, no. 10, p. 7965. DOI: 10.1038/s41598-020-64739-1
    24. Chaemsaithong P., Romero R., Pongchaikul P. et al. Rapid identification of intra-amniotic infection by nanopore-based sequencing. J. Perinat. Med, 2022, vol. 51 (6), pp. 769–774. DOI: 10.1515/jpm-2022-0504
    25. Chandraharan E., Bolten M. Recognition of chorioamnionitis on the cardiotocograph (CTG): The role of the “Chorio Duck Score”. Eur. J. Med. Health Sci, 2024, vol. 6 (1). DOI: 10.24018/ejmed.2024.6.1.1994
    26. Jaiman S., Romero R., Gotsch F. et al. Fetal sepsis: a cause of stillbirth. J. Matern. Fetal. Neonatal. Med, 2022, vol. 35 (25), pp. 9966–9970. DOI: 10.1080/14767058.2022.2079404
    27. Bazhenova L.G., Renge L.V., Zorina V.N. Mechanisms of fetal anti-infection protection. Rossiyskiy vestnik akushera-ginekologa, 2016, no. 16 (1), pp. 33–39 (in Russ.). DOI: 10.17116/rosakush201616133-39
    28. Gomez-Lopez N., Romero R., Leng Y. et al. The origin of amniotic fluid monocytes/macrophages in women with intra-amniotic inflammation or infection. J. Perinat. Med, 2019, no. 47, pp. 822–840. DOI: 10.1515/jpm-2019-0262
    29. Jung E., Romero R., Yeo L. et al. The fetal inflammatory response syndrome: the origins of a concept, pathophysiology, diagnosis, and obstetrical implications. Semin. Fetal. Neonatal. Med, 2020, vol. 25 (4), p. 101146. DOI: 10.1016/j.siny.2020.101146
    30. Hotchkiss R.S., Monneret G., Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat. Rev. Immunol, 2013, vol. 13 (12), pp. 862–874. DOI: 10.1038/nri3552
    31. Hibbert J.E., Currie A., Strunk T. Sepsis-induced immunosuppression in neonates. Front. Pediatr, 2018, no. 6, p. 357. DOI: 10.3389/fped.2018.00357
    32. Tang Q., Zhang L., Li H. et al. The fetal inflammation response syndrome and adverse neonatal outcomes: a meta-analysis. J. Matern. Fetal Neonatal. Med, 2021, vol. 34 (23), pp. 3902–3914. DOI: 10.1080/14767058.2019.1702942
    33. Takahashi N., Nagamatsu T., Fujii T. et al. Extremely high levels of multiple cytokines in the cord blood of neonates born to mothers with systemic autoimmune diseases. Cytokine, 2020, no. 127, p. 154926. DOI: 10.1016/j.cyto.2019.154926

    Метки: 2025, chorioamnionitis, E.B. EFIMKOVA, E.V. DULAEVA, fetal inflammation response syndrome, intraamniotic infection, M.A. IGNATIEVA, O.N. KRAVTSOVA, Practical medicine part 23 №2. 2025, vaginal microbiome

    ‹ Vaginal microbiota as a reflection of a woman’s health Hysterectomy in the early postpartum period: prevalence and risk factors ›
    • rus Версия на русском языке


      usa English version site


      Find loupe

      

    • PARTNERS

      пов  logonew
    «Для
    Practical medicine. Scientific and practical reviewed medical journal
    All rights reserved ©