Chorioamnionitis: unresolved diagnostic issues
O.N. KRAVTSOVA, M.A. IGNATIEVA, E.V. DULAEVA, E.B. EFIMKOVA
Moscow Regional Research Institute of Obstetrics and Gynecology named after Academician V.I. Krasnopolsky, Moscow
Contact details:
Kravtsova O.N. — postgraduate student
Address: 22A Pokrovka St., 101000 Moscow, Russian Federation, tel.: +7-921-342-17-87, e-mail: kozina.97@gmail.com
Chorioamnionitis (CA) is a risk factor for obstetric and perinatal infectious complications. The diagnosis of CA is based on clinical criteria, which vary depending on the professional community. Modern microbiological methods, the amniotic fluid analysis and the diagnostic search aimed at fetal condition are promising areas for improving the CA diagnosis.
Key words: chorioamnionitis, intraamniotic infection, vaginal microbiome, fetal inflammation response syndrome.
REFERENCES
- Kim C.J., Romero R., Chaemsaithong P., Chaiyasit N. et al. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am. J. Obstet. Gynecol, 2015, no. 213, pp. 29–52. DOI: 10.1016/j.ajog.2015.08.040
- Jung E., Romero R., Suksai M. et al. Clinical chorioamnionitis at term: definition, pathogenesis, microbiology, diagnosis, and treatment. Am. J. Obstet. Gynecol, 2024, vol. 230 (3S), pp. 807–840. DOI: 10.1016/j.ajog.2023.02.002
- Romero R., Pacora P., Kusanovic J.P. et al. Clinical chorioamnionitis at term X: microbiology, clinical signs, placental pathology, and neonatal bacteremia — implications for clinical care. J. Perinat. Med, 2021, vol. 49, pp. 275–298. DOI: 10.1515/jpm-2020-0297
- Gibbs R.S., Blanco J.D., St Clair P.J. et al. Quantitative bacteriology of amniotic fluid from women with clinical intraamniotic infection at term. J. Infect. Dis, 1982, vol. 145 (1), pp. 1–8. DOI: 10.1093/infdis/145.1.1
- Newton E.R. Chorioamnionitis and intraamniotic infection. Clin. Obstet. Gynecol, 1993, vol. 36, pp. 795–808. DOI: 10.1097/00003081-199312000-00004
- Romero R., Chaemsaithong P., Korzeniewski S.J. et al. Clinical chorioamnionitis at term III: how well do clinical criteria perform in the identification of proven intra-amniotic infection? J. Perinat. Med, 2016, vol. 44, pp. 23–32. DOI: 10.1097/00003081-199312000-00004
- Zakis D.R., Paulissen E., Kornete L. et al. The evidence for placental microbiome and its composition in healthy pregnancies: A systematic review. J. Reprod. Immunol, 2022, vol. 149. 103455. DOI: 10.1016/j.jri.2021.103455
- Liu Y., Li X., Zhu B. et al. Midtrimester amniotic fluid from healthy pregnancies has no microorganisms using multiple methods of microbiologic inquiry. Am. J. Obstet. Gynecol, 2020, vol. 223 (2), pp. 248.e1–248.e21. DOI: 10.1016/j.ajog.2020.01.056
- Martin R., Makino H., Cetinyurek Y.A. et al. Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota. PLoS One, 2016, vol. 11 (6). DOI: 10.1371/journal.pone.0158498
- Mitchell C.M., Mazzoni C., Hogstrom L. et al. Delivery Mode Affects Stability of Early Infant Gut Microbiota. Cell Rep. Med, 2020, no. 1. DOI: 10.1016/j.xcrm.2020.100156
- Lamont R.F., Sobel J.D., Akins R.A. et al. The vaginal microbiome: new information about genital tract flora using molecular based techniques. BJOG, 2011, no. 118, pp. 533–549. DOI: 10.1111/j.1471-0528.2010.02840.x
- Romero R., Gomez-Lopez N., Winters A.D. et al. Evidence that intra-amniotic infections are often the result of an ascending invasion — a molecular microbiological study. J. Perinat. Med, 2019, no. 47, pp. 915–931. DOI: 10.1515/jpm-2019-0297
- Morioka I., Fujibayashi H., Enoki E. et al. Congenital pneumonia with sepsis caused by intrauterine infection of Ureaplasma parvum in a term newborn: a first case report. J. Perinatol, 2010, no. 30, pp. 359–362. DOI: 10.1038/jp.2009.145
- Zarochentseva N.V., Novikova S.V., Isubova I.R. et al. Risk of developing gestational complications in periodontitis in pregnant women. Voprosy prakticheskoy kol’poskopii. Genital’nye infektsii, 2022, no. 4, pp. 46–49 (in Russ.). DOI: 10.46393/27826392_2022_4_46
- Lee Y.L., Hu H.Y., Chou S.Y. et al. Periodontal disease and preterm delivery: a nationwide population-based co hort study of Taiwan. Sci. Rep, 2022, vol. 12 (1). DOI: 10.1038/s41598-022-07425-8
- Oh K.J., Lee K.A., Sohn Y.K. et al. Intraamniotic infection with genital mycoplasmas exhibits a more intense inflammatory response than intraamniotic infection with other microorganisms in patients with preterm premature rupture of membranes. Am. J. Obstet. Gynecol, 2010, no. 203, pp. 211.e1–211.8. DOI: 10.1016/j.ajog.2010.03.035
- Oh K.J., Romero R., Park J.Y. et al. The earlier the gestational age, the greater the intensity of the intra-amniotic inflammatory response in women with preterm premature rupture of membranes and amniotic fluid infection by Ureaplasma species. J. Perinat. Med, 2019, no. 47, pp. 516–527. DOI: 10.1515/jpm-2019-0003
- Novy M.J., Duffy L., Axthelm M.K. et al. Ureaplasma parvum or Mycoplasma hominis as sole pathogens cause chorioamnionitis, preterm delivery, and fetal pneumonia in rhesus macaques. Reprod. Sci, 2009, no. 16, pp. 56–70. DOI: 10.1177/1933719108325508
- Kelleher M.A., Liu Z., Wang X. et al. Beyond the uterine environment: a nonhuman primate model to investigate maternal-fetal and neonatal outcomes following chronic intrauterine infection. Pediatr. Res, 2017, no. 82, pp. 244–252. DOI: 10.1038/pr.2017.57
- Biran V., Dumitrescu A.M., Doit C. et al. Ureaplasma parvum meningitis in a full-term newborn. Pediatr. Infect. Dis J, 2010, no. 29, p. 1154. DOI: 10.1097/INF.0b013e3181f69013
- Goldenberg R.L., Andrews W.W., Goepfert A.R. et al. The Alabama preterm birth study: umbilical cord blood ureaplasma urealyticum and mycoplasma hominis cultures in very preterm newborn infants. Am. J. Obstet. Gynecol, 2008, no. 198, pp. 43.e1–43.e435. DOI: 10.1016/j.ajog.2007.07.033
- Lee S.M., Romero R., Park J.S. et al. A transcervical amniotic fluid collector: a new medical device for the assessment of amniotic fluid in patients with ruptured membranes. J. Perinat. Med, 2015, no. 43, pp. 381–389. DOI: 10.1515/jpm-2014-0276
- Aggarwal D., Kanitkar T., Narouz M. et al. Clinical utility and cost-effectiveness of bacterial 16S rRNA and targeted PCR based diagnostic testing in a UK microbiology laboratory network. Sci Rep, 2020, no. 10, p. 7965. DOI: 10.1038/s41598-020-64739-1
- Chaemsaithong P., Romero R., Pongchaikul P. et al. Rapid identification of intra-amniotic infection by nanopore-based sequencing. J. Perinat. Med, 2022, vol. 51 (6), pp. 769–774. DOI: 10.1515/jpm-2022-0504
- Chandraharan E., Bolten M. Recognition of chorioamnionitis on the cardiotocograph (CTG): The role of the “Chorio Duck Score”. Eur. J. Med. Health Sci, 2024, vol. 6 (1). DOI: 10.24018/ejmed.2024.6.1.1994
- Jaiman S., Romero R., Gotsch F. et al. Fetal sepsis: a cause of stillbirth. J. Matern. Fetal. Neonatal. Med, 2022, vol. 35 (25), pp. 9966–9970. DOI: 10.1080/14767058.2022.2079404
- Bazhenova L.G., Renge L.V., Zorina V.N. Mechanisms of fetal anti-infection protection. Rossiyskiy vestnik akushera-ginekologa, 2016, no. 16 (1), pp. 33–39 (in Russ.). DOI: 10.17116/rosakush201616133-39
- Gomez-Lopez N., Romero R., Leng Y. et al. The origin of amniotic fluid monocytes/macrophages in women with intra-amniotic inflammation or infection. J. Perinat. Med, 2019, no. 47, pp. 822–840. DOI: 10.1515/jpm-2019-0262
- Jung E., Romero R., Yeo L. et al. The fetal inflammatory response syndrome: the origins of a concept, pathophysiology, diagnosis, and obstetrical implications. Semin. Fetal. Neonatal. Med, 2020, vol. 25 (4), p. 101146. DOI: 10.1016/j.siny.2020.101146
- Hotchkiss R.S., Monneret G., Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat. Rev. Immunol, 2013, vol. 13 (12), pp. 862–874. DOI: 10.1038/nri3552
- Hibbert J.E., Currie A., Strunk T. Sepsis-induced immunosuppression in neonates. Front. Pediatr, 2018, no. 6, p. 357. DOI: 10.3389/fped.2018.00357
- Tang Q., Zhang L., Li H. et al. The fetal inflammation response syndrome and adverse neonatal outcomes: a meta-analysis. J. Matern. Fetal Neonatal. Med, 2021, vol. 34 (23), pp. 3902–3914. DOI: 10.1080/14767058.2019.1702942
- Takahashi N., Nagamatsu T., Fujii T. et al. Extremely high levels of multiple cytokines in the cord blood of neonates born to mothers with systemic autoimmune diseases. Cytokine, 2020, no. 127, p. 154926. DOI: 10.1016/j.cyto.2019.154926