Blood microbiome with various diseases
N.M. KARGALTSEVA1, S.V. MALZEV2, T.A. CHEBOTAREVA2, O.I. DANISHUK3
1S.M. Kirov Military Medical Academy, Saint Petersburg
2Russian Medical Academy of Postgraduate Education, Moscow
3“Klinika Danishuka” LLC, Moscow
Contact details:
Kargaltseva N.M. — MD, Professor of the Department of Clinical Biochemistry and Laboratory Diagnostics
Address: 6 Akademika Lebedeva St., 194044 Saint Petersburg, Russian Federation, tel.: +7-911-783-16-92, e-mail: kargaltseva@mail.ru
Blood is considered sterile, but the 16S rRNA sequencing method has shown that the blood of healthy people contains bacterial DNA. Changes in the blood microbiome of newborns are detected when there is a suspicion of type 1 diabetes, autism, IgA nephropathy, obesity, celiac disease, and bloodstream infection. In these diseases, the blood microbiota is characterized by increased bacterial saturation and the presence of pathogenic microorganisms. The microbiota of the oral cavity and intestine is the cause of translocation and causes changes in the blood microbiota in young children. In type 1 diabetes and obesity, bacteria of the Proteobacteria type predominate (82.92%) and the levels of DNA of the Bacteroides type are reduced (4.31%). In celiac disease, the following taxa predominate in the blood: Campylobacterales, Helicobacteraceae and Bacteroides. The causative agents of bloodstream infection in premature infants with low body weight were representatives of the intestinal microbiota: Klebsiella pneumonia and Acinetobacter baumannii. Autism spectrum disorder begins during the period of intrauterine development in the presence of dihydroxy fatty acids in the umbilical cord blood. The blood microbiota of young children is a persistent infection; its activity is minimized and the persistence period is extended throughout life, starting from the moment of intrauterine development of the child. The blood microbiota is pathogenetically associated with the intestinal microbiota and significantly affects the child’s health.
Key words: blood microbiome, newborns, diseases.
REFERENCES
- Nikkari S.I.J., McLaughlin W.Bi., Dodge D.E., Relman D.A. Does blood of healthy subjects contain bacterial ribosomal DNA? J. Clin. Microbiol, 2001, vol. 39 (5), pp. 1956–1959.
- Drennan M.R. What is “Sterile blood?” Brit. Med. J, 1942, no. 2, pp. 526–526.
- Castillo D.J., Rifkin R., Cowan D.A., Potgieter M. The healthy human blood microbiome: fact or fiction? Front. Cell Infect. Microbiol, 2019, no. 9, p. 148. DOI: 10.3389\fcimb.2019.00148
- Paisse S., Valle C., Servant F., Courtney M., Burcelin R., Amar J. et al. Comprehensive description of blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing. Transfusion, 2016, vol. 56 (5), pp. 1138–1147.
- Kargal’tseva N.M., Mironov A.Yu., Borisova O.Yu., Kocherovets V.I., Karpova E.I., Danishchuk O.I. et al. Blood microbiome of a clinically healthy person — myth or reality? (literature review). Klin. lab. diagnostika, 2024, vol. 69, no. 4, pp. 142–150 (in Russ.).
- Tedeshi G.G., Amici D., Paparelli M. Incorporation of nucleo-sides and amino-acids in human erythrocyte suppensious: possible relation with a diffuse infection of mycoplasmas or bacteria in the L-form. Nature, 1969, no. 222, pp. 1285–1286.
- Kalfin E. Chlamydia-like microorganisms live in donor’s blood as normal flora. Int. J. Internal Med, 2004, vol. 5 (2), pp. 1–7.
- Tsafarova B., Hodzhev Y., Yordanov G., Tolchkov V., Kalfin R., Panaiotov S. Morphology of blood microbiota in healthy individuals assessed by light and electron microscopy. Front. Cell Infect. Microbiol, 2022, no. 12, article no. 1091341. DOI: 10.3389/fcimb.2022. 1091341
- Damgaard C., Magnussen K., Enevold C., Nilsson M., Tolker-Nielsen T., Holmstrup P. et al. Viable bacteria associated with red blood cells and plasma in freshly drawn blood donations. PLoS One, 2015, no. 10, p. e0120826.
- Whittle E., Leonard M.O., Harrison R., Gant T.W., Tonge D.P. Multi-metod characterization of the human circulating microbiome. Fron. Microbiol, 2019, no. 9, article no. 03266. DOI: 10.3389/fmicb. 2018.03266
- Markova N. Dysbiotic microbiota in autistic children and their mothers: persistence of fungal and bacterial wall-deficient L-form variants in blood. Scientific Rep, 2019, no. 9, p. 13401. DOI: 10.1038/s41598-019-49768-9
- Markova N. L-form bacteria cohabitants in human blood: significance for health and diseases. Discovery Med, 2017, no. 128, pp. 305–313.
- Martel J., Wu Ch-Y., Huang P-R., Cheng W-Y. Pleomorphic bacteria-like structures in human blood represent not-living membrane vesicles and protein particles. Scientific Rep, 2017, vol. 7, article no. 10650. DOI: 10.1038/s 41598-017-10479-8
- Matsumiya Y., Kato N., Watanabe K., Kato H. Molecular epidemiological study of vertical transmission of vaginal Lactobacillus species from mothers to newborn infants in Japanese, by arbitrarily primed polymerase chain reaction. J. Infect. Chemother, 2002, vol. 8 (1), pp. 43–49. DOI: 10.1007/s101560200005
- Russo M., Calevo M. G., Alessandro G.D., Tantari M., Migliorati M., Piccardo I. et al. Influence of maternal oral microbiome on newborn oral microbiome in healthy pregnancies. Italian J. Pediatrics, 2923, no. 49, p. 140. DOI: 10.1186/s13052-023-01520-w
- Williams C.B., Mackenzie K.C., Gahagan S. The effect of maternal obesity on the offspring. Clin. Obstet Gynecol, 2014, vol. 57 (3), pp. 508–515. DOI: 10.1097/GRF.0000000000000043
- Hakansson S., Kallen K. Caesarean section increases the risk of hospital care in childhood for asthma and gastroenteritis. Clin. Exp. Allergy, 2003, vol. 33 (6), pp. 757–764.
- Zakharova I.N. Microbiome, microbiota. What’s new? Meditsinskiy Sovet, 2016, no. 16, pp. 92–97 (in Russ.). DOI: 10.21518/2079-701Kh-2016-16-92-97
- Rodriges Kh.M. Microbiota of human milk. Consilium Medicum. Pediatriya (Pril.), 2016, no. 4, pp. 35–40 (in Russ.).
- Ahrens A.P., Hyotylainen T., Petrone J.R., Igelstrom K., George Ch.D., Garrett T.J. et al. Infant microbes and metabolites point to childhood neurodevelopmental disorders. J. Cell, 2024, vol. 187 (8), pp. 1853–1873. DOI: 10.1016/j.cell.2024.02.035
- Hirai T., Umeda N., Harada T., Okumura A., Nakayasu C., Ohto-Nakanishi T et al. Arachidonic acid-derived dihydroxy fatty acidis in neonatal cord blood relate symptoms of autism spectrum disorders and social adaptive functioning: Hamamatsu bitrh cohort for mothers and chilren (HBC Study). Psychiatry Clin. Neurosci, 2024, no. 13710. DOI: 10.1111/pcn.13710
- Shah N., Nigwekar S., Kalim S., Lelouvier B., Servant F., Dalal M. et al. The gut and blood microbiome in IgA-nephropathy and healthy controls. Kidney 360, 2021, vol. 2 (8), pp. 1261–1274. DOI: 10.34007/KID.0000132021
- Yuan X., Yang X., Xu Z., Li J., Sun C.J., Chen R. et al. The profile of blood microbiome in new-onset type 1 diabetes children. J. Sci, 2024, vol. 27. 110252. DOI: 10.1016/j.isci.2024.110252
- Kirilina I.V., Shestopalov A.V., Gaponov A.M., Kamal’dinova D.R., Khusnutdinova D.R., Grigor’eva T.V. et al. Features of the blood microbiome in children with obesity. Pediatriya. Zhurnal im. G.N. Speranskogo, 2022, vol. 101, no. 5, pp. 15–22 (in Russ.). DOI: 10.24110/0031-403Kh-2022-101-5-15-22
- De Cuevillas B., Riezu-Boj J.I., Milagro F.I., Alquegui S.G., Babio N., Pastor-Villaescusa B. et al. Parent-xhild microbiota relationships involved in childhood odesity: A CORALS ancillary study. Nutrition, 2024, no. 130, p. 112603.
- Iqbal F., Siva N., Shenoy P.A., Lewis L.E.S., Purkayastha J., Eshwara V.K. et al. Gut pathogen colonization: A risk factor to bloodstream infections in preterm neonates admitted in the neonatal intensive care unit — a prospective cohort study. Neonatology, 2024. DOI: 10.1159/000542335
- Mehrotra I., Serena G., Cetinbas M., Kenyon V., Martin V.M., Harshman S. et al. Characterition of the blood microbiota in children with Celiac disease. Curr. Res. Microb. Sci, 2021, no. 2, article no. 100069. DOI: 10.1016/j.crmicr.2021.100069