Biomarkers of early renal injury: review of literature
L.I. URAZAYEVA, A.N. MAKSUDOVA
Kazan State Medical University, 49 Butlerov St., Kazan, Russian Federation 420012
Urazayeva L.I. — postgraduate student of the Department of Hospital Therapy with a course in Endocrinology, tel. +7-917-241-09-69, e-mail: ulil@bk.ru
Maksudova A.N. — D. Med. Sc., Associate Professor of the Department of Hospital Therapy with a course in Endocrinology, tel. (843) 237-32-78, e-mail: adelya_kaz@mail.ru
The biomarkers for the early detection of chronic kidney injury are proteinuria, blood serum creatinine and glomerular filtration rate. In chronic kidney disease these markers reveal injury too late when therapy is less effective and the kidney injury is irreversible. For this reason recently there has been a great surge of interest in identifying biomarkers of acute and chronic kidney injury which help to detect early pathological changes in kidneys, to differentiate the injury of different parts of the nephron, to accurately determine the stage of the process, to assess the severity of inflammation and fibrogenesis intensity. The most important new markers which are currently studied include KIM-1, VEGF-А, L-FABP, TGF-b1, NGAL and NAG. This review highlights the results of major recent studies in this area.
Key words: biomarkers of kidney injury, KIM-1, VEGF-А, L—FABP, TGF—b1, NGAL, NAG.
REFERENCES
1. Rytikova N.S., Smirnova M.A., Ugol’kova N.V. et al. Study of renal function. Katalog BioKhimMak, 2007, vol. 2, no. 4, pp. 594-597 (in Russ.).
2. Belokhvostikova T.S., Orlova G.M., Fatakhova O.A et al. Lipokain associated with neutrophil gelatinase, in patients with chronic kidney disease: clinical and laboratory relationship. Nefrologiya i dializ, 2011, vol. 13, no. 3, pp. 268-369 (in Russ.).
3. Belokhvostikova T.S. et al. Lipokalin, assotsiirovannyy s zhelatinazoy neytrofilov, u bol’nykh khronicheskoy bolezn’yu pochek: kliniko-laboratornye vzaimosvyazi [Lipocalin associated with neutrophil gelatinase, in patients with chronic kidney disease: clinical and laboratory relationship]. Nefrologiya i gemodializ. Materialy VII konferentsii RDO, 2011. Vol. 13, no. 3, pp. 268-269.
4. Proletov Ya.Yu., Saganova E.S., Galkina O.V. The role of some biomarkers in assessing the nature of chronic renal damage in patients with primary glomerulopathy. Nefrologiya, 2013, no. 1, pp. 60-69 (in Russ.).
5. Arutyunov G.P., Oganezova L.G., Sokolova A.V. Experimental models of renal tissue destruction tubulointersticial hypertension. Klinicheskaya nefrologiya, 2011, no. 2, pp. 75-78 (in Russ.).
6. Kuwabara T., Mori K., Mukoyama M. Urinary neutrophil gelatinase-associated lipocalin levels reflect damage to glomeruli, proximal tubules, and distal nephrons. Kidney Int., 2009, vol. 75, no. 3, rr. 285-294.
7. Shen S.J., Hu Z.X., Li Q.H. Implications of the changes in serum neutrophil gelatinase-associated lipocalin and cystatin C in patients with chronic kidney disease. Nephrology (Carlton), 2014, vol. 19, no. 3, rr. 29-35.
8. Prkacin I., Ozvald I., Cavrić G., Balenović D., Bulum T., Flegar-Mestrić Z. Importance of urinary NGAL, serum creatinine standardization and estimated glomerular filtration rate in resistant hypertension. Coll. Antropol., 2013, vol. 37, no. 3, rr. 7821-7825.
9. Mori K., Nakao K. Neutrophil gelatinase-associated lipocalin as the real-time indicator of active kidney damage. Kidney Int., 2007, vol. 71, no. 10, rr. 967-970.
10. Damman K., Van Veldhuisen D.J., Navis G. et al. Tubular damage in chronic systolic heart failure is associated with reduced survival independent of glomerular filtration rate. Heart, 2010, no. 96, rr. 1297-1302.
11. Kamijo-Ikemori A., Ichikawa D., Matsui K., Yokoyama T., Sugaya T., Kimura K. Urinary L-type fatty acid binding protein (L-FABP) as a new urinary biomarker promulgated by the Ministry of Health, Labour and Welfare in Japan. Rinsho Byori., 2013, vol. 96, no. 61, rr. 635-640.
12. Ichimura et al. Kidney injury molecule-1 (KIM-1), a putativeepithelial cell adhesion molecule containing a novel immunoglobylindomain, is up-regulated in renal cells after injury. J. Biol. Chem., 1998, vol. 273, no. 7, pp. 4135-4142.
13. Vaidya V.S., Bobadila N.A., Bonventre J.V. Urinary kidney injury molecule – 1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am. J. Physiol. Renal. Physiol., 2006, vol. 290, no. 2, pp. 517-529.
14. Vaidya V.S., Ford G.M., Waikar S.S. et al. A rapid urine test for early detection of kidney injury. Kidney Int., 2009, vol. 76, no. 1, pp. 108-114.
15 Han W.K., Bailly V., Bonventre J.V. Kidney injury molecule – 1(KIM-1): a novel biomarker for human renal proximal tubular injury. Kidney Intern., 2002, vol. 62, no. 1, pp. 237-244.
16. K/DOQI Clinical practice Guidelines for Managing Dyslipidemias in Chronic Kidney Disease. Am. J. Kidney Dis., 2003, vol. 41 (suppl. 4), pp. 91-92.
17. Liangos O., Perianayagam M.C., Vaidya V.S. et al. Urinary N-acetyl-β(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure. J. Am. Soc. Nephrol., 2007, vol. 18, no. 3, pp. 904-912.
18. Szeto C.C., Kwan B.C., Lai K. B. et al. Urinary expression of kidney injury markers in renal transplant recipients. Clin. J. Am. Soc. Nephrol., 2010, vol. 4, no. 12, pp. 2329-2337.
19. Femke Waanders M.D. et al. Effect of Renin-Angiotensin-Aldosterone System Inhibition, Dietary Sodium Restriction, and/or Diuretics on Urinary Kidney Injury Molecule 1 Excretion in Nondiabetic Proteinuric Kidney Disease: A Post Hoc Analysis of a Randomized Controlled Trial. Am. J. Kidney Dis., 2009, vol. 53, no. 1, rr. 16-25.
20. Jungbauer C.G., Birner C., Jung B., Buchner S., Lubnow M., von Bary C., Endemann D., Banas B., Mack M., Böger C.A., Riegger G., Luchner A. Kidney injury molecule-1 and N-acetyl-β-D-glucosaminidase in chronic heart failure: possible biomarkers of cardiorenal syndrome. Eur. J. Heart Fail., 2011, vol. 13, no. 10, rr. 1104-1110.
21. Damman K., Masson S., Hillege H.L. et al. Tubular damage and worsening renal function in chronic heart failure . JACC Heart Fail., 2013, vol. 1, no. 5, pp. 417-424.
22. Tomanek R.J., Holifield J.S., Reiter R.S. et al. Role of VEGF family members and receptors in coronary vessel formation. Dev. Dyn., 2002, vol. 225, rr. 233-240.
23. Trape J.C., Morales R., Molina X. et al. Vascular endothelial growth factor serum concentrations in hypercholesterolemic patients. Scand. J. Clin. Lab. Invest., 2006, vol. 663, rr. 261-267. .
24. Nanchikeeva M.L. Rannyaya stadiya porazheniya pochek u bol’nykh gipertonicheskoy bolezn’yu: klinicheskoe znachenie, printsipy profilaktiki: avtoref. dis. … d-ra med. nauk [Early stage renal disease in patients with hypertension: clinical significance, the principles of prevention. Synopsis of dis. Dr med. sci]. Moscow, 2010.
25. Ayerden Ebinz F., Haksun E., Ulver D.B. et al. The relationship between vascular endothelial growth factor (VEGF) and microalbuminuria in patients with essential hypertension. Intern. Med., 2008, vol. 47, no. 17, rr.1511-1516. .
26. Kubisz P., Chude P., Stasko J. et al. Circulating vascular endothelial growth factor in the normo- and/or microalbuminuric patients with type 2 diabetes mellitus. Act. Diabetol., 2010, vol. 47, no. 2, rr. 119-124
27. Loebig M., Klement J., Schmoller A. et al. Evidence for a relationship between vegf and bmi independent of insulin sensitivity by glucose clamp procedure in a homogenous group healthy young men. PLoS One, 2010, vol. 7, no. 5, rr. 145-152.
28. Chung N.A., Beevers D.G., Lip G. Effects of losartan versus hydrochlorothiazide on indices of endothelial damage/dysfunction, angiogenesis and tissue factor in essential hypertension. Blood. Press., 2004, vol. 13, no. 3, rr. 183-189.
29. Bobkova I.N. Clinical significance of determination of urinary markers of endothelial dysfunction and angiogenesis factors in the evaluation of tubulointerstitial fibrosis in chronic glomerulonephritis. Terapevticheskiy arkhiv, 2007, no. 6, pp. 10-15 (in Russ.).
30. Morozov D.A., Morrison V.V., Morozova O.L. Pathogenetic bases and modern possibilities of early diagnosis of nephrosclerosis in children with vesicoureteral reflux. Saratovskiy nauchno-meditsinskiy zhurnal, 2011, vol. 7, no. 1, pp. 151-157 (in Russ.).
31. Rebrov A.P., Zakharova N.B., Oksen’chuk A.N et al. Diagnostic value of determination of biomarkers in serum and urine of patients with systemic lupus erythematosus. Klinicheskaya nefrologiya, 2014, vol. 1, pp. 10-14 (in Russ.).
32. Biselli P.M., Guerzoni A.R., de Godoy M.F. et al. Vascular endothelial growth factor genetic variability and coronary artery disease in Brazilian population. Heart Vessels. 2008, vol. 23, no. 6, rr. 371-375.
33. Border W.A., Noble N.A. Transforming growth factor-β in tissue fibrosis. N. Eng. J. Med., 1994, vol. 331, rr. 1286-1292.
34. Bottinger E.P., Bitzer M. TGF-β signaling in renal disease. J. Am. Soc. Nephrol., 2002, vol. 13, rr. 2600-2610.
35. Yamamoto T., Noble N.A., Cohen A.H. et al. Expression of transforming growth factor β isoforms in human glomerular diseases. Kidney Int., 1996, vol. 49, rr. 461-469.
36. Kurumova K.O. Faktory fibroza, endotelial’noy disfunktsii i gemostaza u bol’nykh sakharnym diabetom i khronicheskoy bolezn’yu pochek: avtoref. dis. …kand. med. nauk [Factors fibrosis, endothelial dysfunction and hemostasis in patients with diabetes and chronic kidney disease. Synopsis of dis. PhD med.sci]. Moscow, 2010.
37. Bobkova I.N. et al. Urinary levels of monocyte chemotactic protein-1 (MCP-1) and transforming growth factor-β1 (TGF-β 1- non-invasive method of assessing tubulointerstitial fibrosis in chronic glomerulonephritis. Nefrologiya, 2006, vol. 10, no. 4, pp. 49-55.