Values of serotonin, catecholamines and their metabolites in hemolytic-uremic syndrome in children
T.P. MAKAROVA1, 2, R.R. NIGMATULLINA1, V.S. KUDRIN3, L.A. DAVLIEVA1, 2, YU.S. MELNIKOVA1, D.R. KHUSNUTDINOVA2
1Kazan State Medical University, Kazan
2Children’s Republic Clinical Hospital, Kazan
3Scientific-Research Institute named after V.V. Zakusov, Moscow
Contact details:
Makarova T.P. — MD, Professor of the Department of Hospital Pediatrics
Address: 49 Butlerov St., Kazan, Russian Federation, 420012, tel.: +7-903-313-82-98, e-mail: makarova-kgmu@mail.ru
The hemolytic-uremic syndrome is a serious problem in pediatrics and pediatric nephrology. Given the progressive course of the hemolytic-uremic syndrome up to the terminal stage of renal failure, it is necessary to search for markers of damage to the renal tissue as prognostically significant factors in the development of nephrosclerosis. This is of particular importance in childhood to optimize the management of patients with hemolytic-uremic syndrome.
Disturbance of serotonin metabolism by damaged endothelial cells is associated with a progressive decline in kidney function and nephrosclerosis development, and is a predictor of an unfavorable development of chronic kidney disease. It has been established that the degree of kidney damage is demonstrated by indicators of the catecholamine metabolism activity and their ratio, reflecting a disturbance of the kidneys filtration capacity.
Key words: children, hemolytic-uremic syndrome, chronic kidney disease, serotonin, 5-HIAA, catecholamines.
REFERENCES
- Cody E.M., Dixon B.P. Hemolytic Uremic Syndrome. Pediatr Clin North Am, 2019, vol. 66 (1), pp. 235–246. DOI: 10.1016/j.pcl.2018.09.011. PMID: 30454746
- Bulatov V.P., Makarova T.P., Samoylova N.V., Emirova Kh.M. Gemolitiko-uremicheskiy sindrom u detey [Hemolytic-uremic syndrome in children]. Kazan: Meditsina, 2016. 144 p.
- Bezrukov M.V., Shilov Yu.E., Shestakova N.V., Klyushnik T.P. Biological assessment of the severity of depression: a new method for determining the concentration of platelet serotonin. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova, 2014, vol. 114, no. 8, pp. 51–57 (in Russ.).
- Sadykova D.I., Nigmatullina R.R., Aflyatumova G.N. The role of the serotonergic system in the development of diseases of the heart and blood vessels in children. Kazanskiy meditsinskiy zhurnal, 2015, vol. 96, no. 4, pp. 665–669 (in Russ.).
- Gildea J.J., Wang X., Shah N., Tran H., Spinosa M., Van Sciver R. et al. Dopamine and angiotensin type 2 receptors cooperatively inhibit sodium transport in human renal proximal tubule cells. Hypertension, 2012, vol. 60 (2), pp. 396–403. DOI: 10.1161/hypertensionaha.112.194175
- Prada M., Picotti G.B. Content and subcellular localization of catecholamines and 5-hydroxytryptamine in human and animal blood platelets: monoamine distribution between platelets and plasma. Br J Pharmacol, 1979, vol. 65 (4), pp. 653–662.
- Jones S., Jones S., Phillips A.O. Regulation of renal proximal tubular epithelial cell hyaluronan generation: implications for diabetic nephropathy. Kidney Int, 2001, vol. 59 (5), pp. 1739–1749. DOI: 10.1046/j.1523-1755.2001.0590051739.x
- Pareti F., Capitanio A., Mannucci L., Ponticelli C., Mannucci P. Acquired dysfunction due to the circulation of ‘exhausted’ platelets. Am J Med, 1980, vol. 69, pp. 235–239.
- Fong J., Kaplan B.: Impairment of platelet aggregation in hemolytic uremic syndrome: Evidence for platelet ‘exhaustion’. Blood, 1982, vol. 60, pp. 564–569.
- Edefonti A., Bettinelli A., Mondonico P., Appiani A., Picca M., Cossu M., Tentori F., Giani M., Rossi E. Intraplatelet serotonin in children with the hemolytic uremic syndrome. Nephrol, 1985, vol. 23, pp. 207–211.
- Walters M.D., Levin M., Smith C., Nokes T.J., Hardisty R.M., Dillon M.J., Barratt T.M. Intravascular platelet activation in the hemolytic uremic syndrome. Kidney Int, 1988, vol. 33 (1), pp. 107–115. DOI: 10.1038/ki.1988.17
- Pawlak D., Domaniewski T., Znorko B., Oksztulska-Kolanek E., Lipowicz P., Doroszko M., Karbowska M., Pawlak K. The impact of peripheral serotonin on leptin-brain serotonin axis, bone metabolism and strength in growing rats with experimental chronic kidney disease. Bone, 2017, vol. 105, pp. 1–10. DOI: 10.1016/j.bone.2017.08.004
- Małyszko J.S., Małyszko J., Pawlak K., Pawlak D., Buczko W., Myliwiec M. Importance of serotonergic mechanisms in the thrombotic complications in hemodialyzed patients treated with erythropoietin. Nephron, 2000, vol. 84 (4), pp. 305–311. DOI: 10.1159/000045604
- Tozawa Y., Matsushima K. Peripheral 5-HT(2A)-receptor-mediated formation of an inhibitor of atrial natriuretic peptide binding involves inflammation. Eur J Pharmacol, 2002, vol. 440 (1), pp. 37–44. DOI: 10.1016/s0014-2999(02)01310-9. PMID: 11959086
- Broadley K.J. The vascular effects of trace amines and amphetamines. Pharmacology & Therapeutics, 2009, vol. 125 (3), pp. 363–375. DOI: 10.1016/j.pharmthera.2009.11.005
- Fukuda S., Kobayashi H., Mochizuki T., Tanaka M., Yokoyama Y., Hattori N. Plasma dopamine, urinary dopamine and their metabolites in chronic renal failure. Nihon Jinzo Gakkai Shi, 1992, vol. 34 (9), pp. 1011–1017. PMID: 1479729.
- Parbtani A., Frampton G., Yewdall V., Kasai N., Cameron J.S. Platelet and plasma serotonin in glomerulonephritis. III: The nephritis of systemic lupus erythematosus. Clin Nephrol, 1980, vol. 14 (4), pp. 164–172.
- Lood C., Tydén H., Gullstrand B., Klint C., Wenglén C., Nielsen C.T. et al. Type I interferon-mediated skewing of the serotonin synthesis is associated with severe disease in systemic lupus erythematosus. PLoS One, 2015, vol. 10 (4), pp. e0125109. DOI: 10.1371/journal.pone.0125109
- Eisenhofer G., Kopin I.J., Goldstein D.S. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacological Reviews, 2004, vol. 56 (3), pp. 331–349. doi:10.1124/pr.56.3.1
- Sarkar C., Ganju R.K., Pompili V.J., Chakroborty D. Enhanced peripheral dopamine impairs post-ischemic healing by suppressing angiotensin receptor type 1 expression in endothelial cells and inhibiting angiogenesis. Angiogenesis, 2017, vol. 20 (1), pp. 97–107. DOI: 10.1007/s10456-016-9531-8
- Musacchio J.M. Chapter 1: Enzymes involved in the biosynthesis and degradation of catecholamines. In Iverson L (ed.). Biochemistry of Biogenic Amines. Springer, 2013, vol. 3, pp. 1–35.
- Chistiakov D.A., Ashwell K.W., Orekhov A.N., Bobryshev Y.V. Innervation of the arterial wall and its modification in atherosclerosis. Auton Neurosci, 2015, vol. 193, pp. 7–11. DOI: 10.1016/j.autneu.2015.06.005
- Sokolovska J., Stefanovics J., Gersone G., Pahirko L., Valeinis J., Kalva-Vaivode S., Rovite V., Blumfelds L., Pirags V., Tretjakovs P. Angiooietin 2 and Neuropeptide Y are Associated with Diabetic Kidney Disease in Type 1 Diabetes Mellitus. Exp Clin Endocrinol Diabetes, 2020, vol. 128 (10), pp. 654–662. DOI: 10.1055/a-1079-4711