Skin and nervous system: itching and pain
E.V. FAYZULINA1, Yu.V. DAVYDOV1, R.G. KUZNETSOVA2
1Kazan State Medical University, 49 Butlerov St., Kazan, Russian Federation, 420012
2Republican Clinical Hospital of the Ministry of Health of the Republic of Tatarstan, 138 Orenburgskiy Trakt, Kazan, Russian Federation, 420064
Fayzullina E.V. — D. Med. Sc., Professor of the Dermatology and Venereology Department, tel. +7-917-291-11-77, e-mail: elenafs@mail.ru1
Davydov Yu.V. — postgraduate student of the Dermatology and Venereology Department, tel. +7-917-872-75-10, e-mail: jusetal@mail.ru1
Kuznetsova R.G. — Senior Researcher of Scientific-Research Department, tel. (843) 237-34-47, e-mail: rokuz@mail.ru2
The review presents modern data on the leading role of the nervous system in forming the sensations of pain and itching in dermatopathology, the search of non-antigistaminic medicines for the relief of itching in experiments.
Key words: itching, pain, neuropeptides, β-alanine, imiquimod (IQ).
REFERENCES
1. Ikoma A. et al. Neurobiology of pruritus. Nature Rev. Neurosci., 2006, 7. P. 535.
2. Summey B.T. Jr., Yosipovitch G. Pharmacologic advances in the systemic treatment of itch. Dermatol. Ther., 2005, 18. P. 328.
3. Dalgard F. et al. Self-reported skin morbidity among adults: Associations with quality of life and general health in a Norwegian survey. J. Investig Dermatol. Symp. Proc., 2004, 9. P. 120.
4. Bernhard J.D. Itch and pruritus. What are they, and how should itches be classified? Dermatol. Ther., 2005, 18. P. 288.
5. Charkoudian N. Mechanisms and modifiers of reflex induced cutaneous vasodilatation and vasoconstriction in humans. J. Appl. Physiol.
6. Chapman B.P., Moynihan J. The brain-skin connection: Role of phychosocial factors and neuropeptides in psoriasis. Expert Rev. Clin. Immunol., 2009, 5. Pp. 623-627.
7. Reich A., Wojcik-Maciejewicz A., Slominski A.T. Stress and the skin. G Ital Dermatol. Venereal., 2010, 145. Pp. 213-219.
8. Theoharides T.C. et al. il-33 augments substance P-induced VEGF secretion from human mast cells and increased in psoriatic skin. Proc. Natl. Acad. Sci USA, 2010, 107. Pp. 4448-4453.
9. Buddenkotte J., Steinhoff M. Pathophysiology and therapy of pruritus in allergic and atopic diseases. Allergy, 2010, 65. Pp. 805-821.
10. Ganceviciene R. et al. The role of neuropeptides in the multifactorial pathogenesis of acne vulgaris. Dermatoendocrinol., 2009, 1. Pp. 170-176.
11. Pradhan L. et al. Gene expression of pro-inflammatory cytokines and neuropeptides in diabetic wound healing. J. Surg. Res., 2009, 167 (2). Pp. 336-342.
12. Bodo E. et al. Thyroid-stimulating hormone, a novel, locally produced modulator of human epidermal functions, is regulated by thyrotropin-releasing hormone and thyroid hormones. Endocrinology, 2010, 151. Pp. 1633-1642.
13. Ito N. et al. Corticotropin-releasing hormone stimulates the in sity generation of mast cells from precursors in the human hair follicle mesenchyme. J. Invest. Dermatol., 2010, 130. Pp. 995-1004.
14. Poeggeler B. et al. Thyreotropin powers human mitochondria. FASEB J., 2010, 24. Pp. 1525-1531.
15. Sun Y.G., Chen Z.F. A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. Nature, 2007, 448. Pp. 700-703.
16. Sun Y.G. et al. Cellular basis of itch sensation. Science, 2009, 325. Pp. 1531-1534.
17. Winkelmann R.K. Cutaneous sensory nerves. Semin Dermatol., 1988, 7. Pp. 236-268.
18. Munger B.L., Ide C. The structure and function of cutaneous sensory reseptors. Arch. Hystol. Cytol., 1988, 51. Pp. 1-34.
19. Breathnach A.S. Electron microscopy of cutaneous nerves and receptors. J. Invest. Dermatol., 1977, 69. Pp. 8-26.
20. Tschachler E. et al. Sheet preparations expose the dermal nerve plexus of human skin and render the dermal nerve and organ accessible to extensive analysis. J. Invest. Dermatol., 2004, 122. Pp. 177-182.
21. Kelly E.J. et al. Nerve fibre and sensory and organ density in the epidermis and papillary dermis of the human hand. Br. J. Plast. Surg., 2005, 58. Pp. 774-779.
22. Yamada N., Kashima Y., Inoue T. Scanning electron microscopy of the basal surface of the epidermis of human digits. Acta Anat (Basel), 1996, 155. Pp. 242-248.
23. Alvarez F.J., Fylfe R.E. Nociception for the 21st century. Curr. Rev. Pain, 2000, 4. Pp. 451-458.
24. Lawson S.N. Phenotype and function of somatic primary afferent nociceptive neurons with C-Alfa-orAalpha/beta-fibres. Exp. Physiol., 2002, 87. Pp. 239-244.
25. Schmidt R. et al. Novel classes of responsive and unresponsive C nociceptors in human scin. J. Neurosci., 1995, 15. Pp. 333-341.
26. Basbaum A.I. et al. Cellular and molecular mechanisms of pain. Cell, 2009, 139. Pp. 267-284.
27. Zummermann K. et al. Sensory neuron sodium channel Nav 1.8 is essential for pain at low temperatures. Nature, 2007, 447. Pp. 855-858.
28. Caterina M.J. et al. The capsacin receptor A heat-activated ion channel in the pain pathway. Nature, 1997, 389, pp. 816-824.
29. Slominski A., Wortsman J. Neuroendocrinology of the skin. Endocr. Rev., 2000, 21, pp. 457-487.
30. Slominski A. et al. Corticotropin releasing hormone and proopiomelanocortin involvement in cutaneous response to stress. Physiol. Rev., 2000, 80, pp. 979-1020.
31. Brain S.D., Moore P.K. Pain and Neurogenic Inflammation. Basel, Birkhauser Verlag, 1999.
32. Vetrugno R. et al. Sympathetic skin response. Basic mechanisms and clinical applications. Clin. Aution Res., 2003, 13, pp. 256-270.
33. Tainio H., Vaalasti A., Rechardt L. The distribution of substance P-, CGRP-, galanin- and ANP-like immunoreactive nerves in human sweat glands. Histochem J., 1987, 19, pp. 375-380.
34. Bjorklund H. et al. Sensory and autonomic innervation of non-hairy and hairy human skin. An immunohistochemical study. Cell Tissue Res., 1986, 243, pp. 51-57.
35. Liu Q., Sikand P., Ma C., Tang Z., Han L., Li Z., Sun S., H. LaMotte R., Dong X. Mechanisms of Itch Evoked by ß-Alanine. The Journal of Neuroscience, 2012, 32 (42), pp. 14532-14537.
36. Xu Y., Lopes C., Wende H., Guo Z., Cheng L., Birchmeier C., Ma Q. Ontogeny of Excitatory Spinal Neurons Processing Distinct Somatic Sensory Modalities. The Journal of Neuroscience, 2013, 33 (37), pp. 14738-14748.
37. Cevikbas F., Wang X., Akiyama T., Kempkes C., Savinko T., Antal A., Kukova G., Buhl T., Ikoma A., Buddenkotte J., Soumelis V., Feld M., Alenius H. R. Dillon S, Carstens E, Homey B, Basbaum A, Steinhoff M. A sensory neuron–expressed IL-31 receptor mediates T helper cell–dependent itch: Involvement of TRPV1 and TRPA1. 2013 American Academy of Allergy, Asthma & Immunology. http://dx.doi.org/10.1016/j.jaci.2013.10.048
38. Kim S., Park G., Kim D., Lee J., Min H., Wall E., C. Lee J., Simon M., Joong Lee S., Han S. Analysis of cellular and behavioral responses to imiquimod reveals a unique itch pathway in transient receptor potential vanilloid 1 (TRPV1)-expressing neurons. PNAS Early Edition, available at: www.pnas.org/cgi/doi/10.1073/pnas.1019755108.
39. Liu T., Ji R. Oxidative stress induces itch via activation of transient receptor potential subtype ankyrin 1 in mice. Neurosci Bull., 2012, 28 (2), pp. 145-154.
40. Ringkamp M., Schepers R., Shimada S., Johanek L., Hartke T., Borzan J., Shim B., LaMotte R., Meyer R. A Role for Nociceptive, Myelinated Nerve Fibers in Itch Sensation. The Journal of Neuroscience, Oct. 19, 2011, 31 (42), pp. 14841-14849.
41. Ross S., Mardinly A., McCord A., Zurawski J., Cohen S., Jung C., Hu L., Mok S., Shah A., Savner E., Tolias C., Corfas R., Chen S., Inquimbert P., Xu Y., McInnes R., Rice F., Corfas G., Ma Q., Woolf C., Greenberg M. Loss of Inhibitory Interneurons in the Dorsal Spinal Cord and Elevated Itch in Bhlhb5 Mutant Mice. Neuron 65, 2010. Pp. 886-898. Elsevier Inc.