pm mfvt1
    • Main page
      • About journal
      • Articles. Working with contents
      • Editor-in-chief
      • Editorial Council
      • Editorial Board


      • For authors
      • Standards for formatting information
      • Reviewing
      • Politics editorial board
      • Ethics of journal publications


      • For advertisers
      • Subscription
      • About the Publishing House
      • Contact us
  • Role of microbiome in modulating post-vaccine immune response

    Редактор | 2020, Lectures for doctors, Practical medicine part 18 №3. 2020 | 1 апреля, 2020

    S.V. MALTSEV1, L.Z. SAFINA2

     1Russian Medical Academy of Continuous Professional Education MOH Russia, Moscow

    2Kazan State Medical Academy — Branch Campus of the FSBEI FPE RMACPE MOH Russia, Kazan

    Contact:

    Maltsev S.V. – Honored Researcher of the Russian Federation and Republic of Tatarstan, corresponding member of the Academy of Sciences of the Republic of Tatarstan, MD, Professor of the Department of Pediatrics named after Prof. G.N. Speranskiy

    Address: 2/1 Barrikadnaya Str., building 1, 123242, Moscow, Russian Federation, tel. +7-905-314-40-28, e-mail: [email protected]

     Scientific studies of the last decade on the composition and function of the human intestine microflora have caused a new wave of interest in studying the relationship between microbiota disorders and the development of inflammatory etiology diseases. The present review summarizes the literature on the effect of the intestinal microbiome on the mechanisms of vaccine-induced immunity formation. A series of studies using the latest technologies and analytical methods are described, which showed that the intestinal microbiota activates many pathways that control innate and adaptive immunity in the intestine. The review provides evidence that the use of probiotics in specific courses before and after vaccination (in particular with oral vaccines) can improve seroconversion rates in children. The prospects of using the immunomodulating potential of probiotic strains as a means of increasing the efficiency of vaccination are highlighted.

    Key words: antigenic stimulation, intestinal microbiota, vaccination, immunomodulation, probiotic functions.

    REFERENCES 

    1. Zakharova I.N., Berezhnaya I.V., Sugyan N.G. Antibiotic-associated diarrhea in children: what’s new? Meditsinskiy sovet, 2017, no. 19, pp. 126-131 (in Russ.). doi.org/10.21518/2079701X-2017-19-126-133.
    2. Guinane C.M., Cotter P.D. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therapeutic advances in gastroenterology, 2013, no. 6 (4), pp. 295-308. doi: 10.1177/1756283X13482996.
    3. Marteau P., Doré J. (eds.). Gut Microbiota a fullfledged organ. John Libbey Eurotext, 2017, pp. 113-124.
    4. Pestova N.E., Barantsevich E.P., Rybkova N.S., Kozlova N.S., Barantsevich N.E. Study of the effectiveness of applying the DNA sequencing method for the 16srRNA gene fragment for the identification of microorganisms. Profilakticheskaya i klinicheskaya meditsina, 2011, no. 4, pp. 54-55 (in Russ.).
    5. Schuijt T.J., Lankelma J.M., Sciclun aB.P. et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut, 2015. doi: 10.1136/gutjnl-2015-309728.
    6. Samuelson D.R., Welsh D.A., Shellito J.E. Regulation of lung immunity and host defense by the intestinal microbiota. Frontiers Microbiol, 2015, no. 6, p. 1085.
    7. Sender R., Fuchs S., Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol., 2016, no. 14 (8):e1002533.
    8. Kamada N., Núñez G. Regulation of the immune system by the resident intestinal bacteria. Gastroenterology, 2014, no. 146 (6), pp. 1477–1488.
    9. Buffie C.G., Pamer E.G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol, 2013, 13, pp. 791-801.
    10. Albers R., Antoine J. Bourdet-Sicard R. et al. Markers to measure immunomodulation in human nutrition intervention studies. J. Nutr., 2005, no. 94, pp. 452-481.
    11. Oh J.Z. et al. TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination. Immunity, 2014, vol. 41, 3, pp. 478-492.
    12. Valdez Y., Brown E.M., Finlay B.B. Influence of the microbiota on vaccine effectiveness. Trends immunol, 2014, no. 35, pp. 526-537.
    13. Collins N., Belkaid Y. Do the microbiota influence vaccines and protective immunity to pathogens? Engaging our endogenous adjuvants. Cold Spring HarbPerspect Biol, 2018, no. 10 (2):a028860.
    14. Littman D.R. Do the microbiota influence vaccines and protective immunity to pathogens? If so, is there potential for efficacious microbiota-based vaccines? Cold Spring HarbPerspect Biol, 2018, no. 10 (2):a029355.
    15. Macpherson A.J. Do the microbiota influence vaccines and protective immunity to pathogens? Cold Spring HarbPerspect Biol, 2018, no. 10 (2):a029363-11.
    16. Lynn D.J., Pulendran B. The potential of the microbiota to influence vaccine responses. J Leukoc Biol, 2018, no. 103 (2), pp. 225-231.
    17. Kirkpatrick B.D., Colgate E.R., Mychaleckyj J.C., Haque R., Dickson D.M., Carmolli M.P., Nayak U., Taniuchi M., Naylor C., Qadri F., et al. The “Performance of Rotavirus and Oral Polio Vaccines in Developing Countries” (PROVIDE) study: description of methods of an interventional study designed to explore complex biologic problems. Am J Trop Med Hyg, 2015, no. 92, pp. 744-751.
    18. Patel M., Pedreira C., De Oliveira L.H., Tate J., Orozco M., Mercado J., Gonzalez A., Malespin O., Amador J.J., Umana J. et al. Association between pentavalent rotavirus vaccine and severe rotavirus diarrhea among children in Nicaragua. JAMA, no. 301, 2009, pp. 2243-2251(in Russ.).
    19. Zaman K., Dang D.A., Victor J.C., Shin S., Yunus M., Dallas M.J., Podder G., Vu D.T., Le T.P., Luby S.P. et al. Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in Asia: a randomised, double-blind, placebo-controlled trial. Lancet, 2010, no. 376, pp. 615-623.
    20. Armah G.E., Sow S.O., Breiman R.F., Dallas M.J., Tapia M.D., Feikin D.R., Binka F.N., Steele A.D., Laserson K.F., Ansah N.A. et al. Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in sub-Saharan Africa: a randomised, double-blind, placebo-controlled trial. Lancet, 2010. 376, pp. 606-614.
    21. Rook G.A., Dheda K., Zumla A. Immune systems in developed and developing countries; implications for the design of vaccines that will work where BCG does not. Tuberculosis, 2006, no. 86, pp. 152-162.
    22. Parker E.P., Kampmann B., Kang G., Grassly N.C. Influence of enteric infections on response to oral poliovirus vaccine: a systematic review and meta-analysis. J Infect Dis, 2014, no. 210, pp. 853-864.
    23. Ahishali E., Boztas G., Akyuz F., Ibrisim D., Poturoglu S., Pinarbasi B., Ozdil S., Mungan Z. Response to hepatitis B vaccination in patients with celiac disease. Dig Dis Sci, 2008, no. 53, pp. 2156-2159
    24. Bjorksten B. Diverse microbial exposure ― consequences for vaccine development. Vaccine, no. 30, 2012, pp. 4336-4340.
    25. McElhaney J.E., Zhou X., Talbot H.K., Soethout E., Bleackley R.C., Granville D.J., Pawelec G. The unmet need in the elderly: how immunosenescence, CMV infection, co-morbidities and frailty are a challenge for the development of more effective influenza vaccines. Vaccine, 2012, 30, pp. 2060-2067.
    26. Pulendran B. Systems vaccinology: probing humanity’s diverse immune systems with vaccines. ProcNatlAcadSci, 2014, 111, pp. 12300-12306.
    27. Vlasova et al. The gut microbiome and immune responses to viral vaccines. Current Opinion in Virology, 2019, no. 37, pp. 16-25.
    28. Brown E.M., Sadarangani M., Finlay B.B. The role of the immune system in governing host-microbe interactions in the intestine. Nat Immunol, 2013, no. 14, pp. 660-667.
    29. Jamieson A.M. Influence of the microbiome on response to vaccination. Hum Vaccines Immunother, 2015, no. 11, pp. 2329-2331.
    30. Subramanian S., Huq S., Yatsunenko T., Haque R., Mahfuz M., Alam M.A., Benezra A., DeStefano J., Meier M.F., Muegge B.D. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature, 2014, no. 510, pp. 417-421.
    31. Yatsunenko T., Rey F.E., Manary M.J., Trehan I., Dominguez-Bello M.G., Contreras M., Magris M., Hidalgo G., Baldassano R.N., Anokhin A.P. et al. Human gut microbiome viewed across age and geography. Nature, 2012, 486, pp. 222-227.
    32. McGowan P.O., Meaney M.J., SzyfDiet M. and the epigenetic (re)programming of phenotypic differences in behavior. Brain Res, 2008, no. 1237, pp. 12-24.
    33. Hahn O., Gronke S., Stubbs T.M., Ficz G., Hendrich O., Krueger F., Andrews S., Zhang Q., Wakelam M.J., Beyer A. et al. Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism. Genome Biol, 2017, no. 18, p. 56.
    34. Santis S. De, Cavalcanti E., Mastronardi M., Jirillo E., Chieppa M. Nutritional keys for intestinal barrier modulation. Front Immunol, 2015, no. 6, p. 612.
    35. Prendergast A.J., Kelly P. Interactions between intestinal pathogens, enteropathy and malnutrition in developing countries. CurrOpin Infect Dis., 2016, no. 29, pp. 229-236.
    36. Korpe P.S., Petri W.A. Jr. Environmental enteropathy: critical implications of a poorly understood condition. Trends Mol Med, 2012, no. 18, pp. 328-336.
    37. Miyazaki A., Kandasamy S., Michael H., Langel S.N., Paim F.C., Chepngeno J., Alhamo M.A., Fischer D.D., Huang H.C., Srivastava V. et al. Protein deficiency reduces efficacy of oral attenuated human rotavirus vaccine in a human infant fecal microbiota transplanted gnotobiotic pig model. Vaccine, 2018, no. 36, pp. 6270-6281.
    38. Hamilton A.L., Kamm M.A., Ng S.C., Morrison M. Proteus spp. as putative gastrointestinal pathogens. ClinMicrobiol Rev, 2018, no. 31.
    39. Presley L.L., Ye J., Li X., Leblanc J., Zhang Z., Ruegger P.M., Allard J., McGovern D., Ippoliti A., Roth B. et al. Host-microbe relationships in inflammatory bowel disease detected by bacterial and metaproteomic analysis of the mucosal-luminal interface. Inflamm Bowel Dis, 2012, no. 18, pp. 409-417.
    40. Dimitriu P.A., Boyce G., Samarakoon A., Hartmann M., Johnson P., Mohn W.W. Temporal stability of the mouse gut microbiota in relation to innate and adaptive immunity. Environ Microbiol Rep, 2013, 5, pp. 200-210.
    41. Wirth J.P., Petry N., Tanumihardjo S.A., Rogers L.M., McLean E., Greig A., Garrett G.S., Klemm R.D., Rohner F. Vitamin A supplementation programs and country-level evidence of vitamin A deficiency. Nutrients, 2017, no. 9.
    42. Hall J.A., Grainger J.R., Spencer S.P., Belkaid Y. The role of retinoic acid in tolerance and immunity. Immunity, 2011, no. 35, pp. 13-22.
    43. Wiedermann U., Hanson L.A., Holmgren J., Kahu H., Dahlgren U.I. Impaired mucosal antibody response to cholera toxin in vitamin A-deficient rats immunized with oral cholera vaccine. Infect Immun, 1993, no. 61, pp. 3952-3957.
    44. Vlasova A.N., Chattha K.S., Kandasamy S., Siegismund C.S., Saif L.J. Prenatally acquired vitamin A deficiency alters innate immune responses to human rotavirus in a gnotobiotic pig model. J Immunol, 2013, no. 190, pp. 4742-4753.
    45. Kandasamy S., Chattha K.S., Vlasova A.N., Saif L.J. Prenatal vitamin A deficiency impairs adaptive immune responses to pentavalent rotavirus vaccine (RotaTeqJ) in a neonatal gnotobiotic pig model. Vaccine, 2014, no. 32, pp. 816-824.
    46. Mora J.R., Iwata M., Eksteen B., Song S.Y., Junt T., Senman B., Otipoby K.L., Yokota A., Takeuchi H., Ricciardi-Castagnoli P. et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science, 2006, no. 314, pp. 1157-1160.
    47. Hammerschmidt S.I., Friedrichsen M., Boelter J., Lyszkiewicz M., Kremmer E., Pabst O., Forster R. Retinoic acid induces homing of 22 Viruses and the microbiome Current Opinion in Virology, 2019, no. 37, pp. 16-25, available at: www.sciencedirect.
    48. Comprotective T and B cells to the gut after subcutaneous immunization in mice. J Clin Invest, 2011, no. 121, pp. 3051-3061.
    49. Klebanoff C.A., Spencer S.P., Torabi-Parizi P., Grainger J.R., Roychoudhuri R., Ji Y., Sukumar M., Muranski P., Scott C.D., Hall J.A. et al. Retinoic acid controls the homeostasis of pre-cDC-derived splenic and intestinal dendritic cells. J Exp Med, 2013, no. 210, pp. 1961-1976.
    50. Hall J.A., Cannons J.L., Grainger J.R., Dos Santos L.M., Hand T.W., Naik S., Wohlfert E.A., Chou D.B., Oldenhove G., Robinson M. et al. Essential role for retinoic acid in the promotion of CD4(+) T cell effector responses via retinoic acid receptor alpha. Immunity, 2011, no. 34, pp. 435-447.
    51. Hibberd M.C., Wu M., Rodionov D.A., Li X., Cheng J., Griffin N.W., Barratt M.J., Giannone R.J., Hettich R.L., Osterman A.L. et al. The effects of micronutrient deficiencies on bacterial species from the human gut microbiota. SciTransl Med, 2017, no. 9.
    52. Swann J.R., Want E.J., Geier F.M., Spagou K., Wilson I.D., Sidaway J.E., Nicholson J.K., Holmes E. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. ProcNatlAcadSci, 2011, no. 108 (suppl. 1), p. 4523-4530.
    53. Nicholson J.K., Holmes E., Kinross J., Burcelin R., Gibson G., Jia W., Pettersson S. Host-gut microbiota metabolic interactions. Science, 2012, no. 336, pp. 1262-1267.
    54. Bhattacharya N., Yuan R., Prestwood T.R., Penny H.L., DiMaio M.A., Reticker-Flynn N.E., Krois C.R., Kenkel J.A., Pham T.D., Carmi Y. et al. Normalizing microbiota-induced retinoic acid deficiency stimulates protective CD8(+) T cell-mediated immunity in colorectal cancer. Immunity, 2016, no. 45, pp. 641-655.
    55. Zhao N., Wang X., Zhang Y., Gu Q., Huang F., Zheng W., Li Z. Gestational zinc deficiency impairs humoral and cellular immune responses to hepatitis B vaccination in offspring mice. PLoS One, 2013, 8:e73461.
    56. Gielda L.M., DiRita V.J. Zinc competition among the intestinal microbiota. mBio, 2012, 3 e00171-00112.
    57. Vlasova A.N., Chattha K.S., Kandasamy S., Liu Z., Esseili M., Shao L., Rajashekara G., Saif L.J. Lactobacilli and bifidobacteria promote immune homeostasis by modulating innate immune responses to human rotavirus in neonatal gnotobiotic pigs. PLoS One, 2013, 8:e76962.
    58. Vlasova A.N., Kandasamy S., Chattha K.S., Rajashekara G., Saif L.J. Comparison of probiotic Lactobacilli and bifidobacteria effects, immune responses and rotavirus vaccines and infection in different host species. Vet ImmunolImmunopathol, 2016, no. 172, pp. 72-84.
    59. Licciardi P.V., Tang M.L.K. Vaccine adjuvant properties of probiotic bacteria. Discov Med, 2011, no. 12, pp. 525-533.
    60. Vitetta L., Saltzman E.T., Thomsen M., Nikov T., Hall S. Adjuvant probiotics and the intestinal microbiome: enhancing vaccines and immunotherapy outcomes (vol 5, 50, 2017). Vaccines–Basel, 2018, no. 6.
    61. Pang I.K., Iwasaki A. Control of antiviral immunity by pattern recognition and the microbiome. Immunol Rev, 2012, no. 245, pp. 209-226.
    62. Thomas C.M., Versalovic J. Probiotics-host communication: modulation of signaling pathways in the intestine. Gut Microbes, 2010, no. 1, pp. 148-163.
    63. Lin P.W., Myers L.E., Ray L., Song S.C., Nasr T.R., Berardinelli A.J., Kundu K., Murthy N., Hansen J.M, Neish A.S. Lactobacillus rhamnosus blocks inflammatory signaling in vivo via reactive oxygen species generation. Free RadicBiol Med, 2009, no. 47, pp. 1205- 1211.
    64. Tao Y., Drabik K.A., Waypa T.S., Musch M.W., Alverdy J.C., Schneewind O., Chang E.B., Petrof E.O. Soluble factors from Lactobacillus GG activate MAPKs and induce cytoprotective heat shock proteins in intestinal epithelial cells. Am J Physiol Cell Physiol, 2006, no. 290, pp. 1018-C1030.
    65. Kumar A., Vlasova A.N., Liu Z., Chattha K.S., Kandasamy S., Esseili M., Zhang X., Rajashekara G., Saif L.J. In vivo gut transcriptome responses to Lactobacillus rhamnosus GG and Lactobacillus acidophilus in neonatal gnotobiotic piglets. Gut Microbes, 2014, no. 5, pp. 152-164.
    66. Viruses and the microbiome Current Opinion in Virology, 2019, no. 37, pp. 16-25, available at: www.sciencedirect.com
    67. Isolauri E., Joensuu J., Suomalainen H., Luomala M., Vesikari T. Improved immunogenicity of oral D x RRV reassortant rotavirus vaccine by Lactobacillus casei GG. Vaccine, 1995, no. 13, pp. 310-312.
    68. Chattha K.S., Vlasova A.N., Kandasamy S., Rajashekara G., Saif L.J. Divergent immunomodulating effects of probiotics on T cell responses to oral attenuated human rotavirus vaccine and virulent human rotavirus infection in a neonatal gnotobiotic piglet disease model. J Immunol, 2013, no. 191, pp. 2446-2456.
    69. Chattha K.S., Vlasova A.N., Kandasamy S., Esseili M.A., Siegismund C., Rajashekara G., Saif L.J. Probiotics and colostrum/milk differentially affect neonatal humoral immune responses to oral rotavirus vaccine. Vaccine, 2013, no. 31, P. 1916-1923.
    70. Fang H., Elina T., Heikki A., Seppo S. Modulation of humoral immune response through probiotic intake. FEMS Immunol Med Microbiol, 2000, no. 29, pp. 47-52.
    71. de Vrese M., Rautenberg P., Laue C., Koopmans M., Herremans T., Schrezenmeir J. Probiotic bacteria stimulate virus-specific neutralizing antibodies following a booster polio vaccination. Eur J Nutr, 2005, no. 44, pp. 406-413.
    72. Paineau D., Carcano D., Leyer G., Darquy S., Alyanakian M.A., Simoneau G., Bergmann J.F., Brassart D., Bornet F., Ouwehand A.C. Effects of seven potential probiotic strains on specific immune responses in healthy adults: a double-blind, randomized, controlled trial. FEMS Immunol Med Microbiol, 2008, no. 53, pp. 107-113.
    73. West C.E., Gothefors L., Granstrom M., Kayhty H., Hammarstrom M.L., Hernell O. Effects of feeding probiotics during weaning on infections and antibody responses to diphtheria, tetanus and Hib vaccines. Pediatric Allergy Immunol, 2008, no. 19, pp. 53-60.
    74. Kukkonen K., Nieminen T., Poussa T., Savilahti E., Kuitunen M. Effect of probiotics on vaccine antibody responses in infancy ― a randomized placebo-controlled double-blind trial. Pediatric Allergy Immunol, 2006, no. 17, pp. 416-421.
    75. Soh S.E., Ong D.Q., Gerez I., Zhang X., Chollate P., Shek L.P., Lee B.W., Aw M. Effect of probiotic supplementation in the first 6 months of life on specific antibody responses to infant Hepatitis B vaccination. Vaccine, 2010, no. 28, pp. 2577-2579.
    76. Vitetta L., Saltzman E.T., Thomsen M., Nikov T., Hall S. Adjuvant probiotics and the intestinal microbiome: enhancing vaccines and immunotherapy outcomes. Vaccines–Basel, 2017, no. 5.
    77. Davidson L.E., Fiorino A.M., Snydman D.R., Hibberd P.L. (2011) Lactobacillus GG as an immune adjuvant for live-attenuated influenza vaccine in healthy adults: a randomized double-blind placebo-controlled trial. J. Clin. Nutr, no. 65 (4), pp. 501-507.
    78. West C.E., Gothefors L., Granström M. et al. Effects of feeding probiotics during weaning on infections and antibody responses to diphtheria, tetanus and Hib vaccines. Allergy Immunol, no. 19 (1), pp. 53-60.
    79. Youngster I., Kozer E., Lazarovitch Z. et al. Probiotics and the immunological response to infant vaccinations: a prospective, placebo controlled pilot study. Dis. Child,  no. 96 (4), pp. 345-349.
    80. Bogdanova N.M., Bulatova E.M., Vasia M.N. A modern view of microbiocenosis, the immune response, and factors affecting their formation. Fundamental and applied aspects. Voprosy sovremennoy pediatrii, 2013, vol. 12, no.  4, pp. 23-25 (in Russ.).

    Метки: 2020, antigenic stimulation, immunomodulation, intestinal microbiota, L.Z. SAFINA, Practical medicine part 18 №3. 2020, probiotic functions, S.V. MALTSEV, vaccination

    ‹ Influence of vitamin D on the course and outcomes of pregnancy in women  Formation of intestinal microbiotes and cognitive development ›
    • rus Версия на русском языке


      usa English version site


      Findloupe

      

    • PARTNERS

      пов  logonew
    «Для
    Practical medicine. Scientific and practical reviewed medical journal
    All rights reserved ©