Revising the regulation of cardiac remodeling in atrial fibrillation by microRNA research
D.D. LERNER, S.D. MAYANSKAYA
Kazan State Medical University, 49 Butlerov St., Kazan, Russian Federation 420012
Lerner D.D. ― postgraduate student of the Department of Hospital Therapy, tel. +7 (843) 233-30-36, e-mail: dinakaz84med@mail.ru
Mayanskaya S.D. ― D. Med. Sc., Professor of the Department of Hospital Therapy, tel. +7-905-316-99-66, e-mail: Smayanskaya@mail.ru
The review presents modern data on different molecules of microRNA involved in the regulation of myocardial remodeling processes in atrial fibrillation. The characteristics of different microRNAs as a cardiospecific biomarker of fibrosis and apoptosis of cardiomyocytes and their Ca+ channels is provided. The possibility of studying certain microRNAs (microRNA―133, microRNA―1, microRNA―21, miRNA―208a and 208b, microRNA―29, microRNA―328, microRNA―499) as appropriate targets for treatment of arrhythmias, as well as the prognosis of their occurrence and gravity of the current, is discussed.
Key words: atrial fibrillation, microRNA, myocardial remodeling.
REFERENCES
- Saksena S., Camm A.J. Electrophysiological Disorders of the Heart: Expert Consult. 2nd Edition. St. Louis: Saunders Publishing, 2012. 1488 p.
- Braunwald E. Shattuck lecture — Cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. N. Engl. J. Med, 1997, vol. 337, no. 19, pp. 1360-1369.
- Lip G.Y., Kakar P., Watson T. Atrial fibrillation — the growing epidemic. Heart, 2007, vol. 93, pp. 542-533.
- Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, vol. 116, pp. 281-297.
- Arakelyan M.S., Poteshkina N.G., Mogutova P.A. Modern view on the problem of atrial fibrillation and its recurrence. Klinitsist, 2011, no. 3, pp. 10-18 (in Russ.).
- Care A., Catalucci D., Felicetti Fyu et al. MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 2007, vol. 13, no. 5, pp. 613-618.
- Luo X., Zhang H., Xiao J., Wang Z. Regulation of Human Cardiac Ion Channel Genes by MicroRNAs: Theoretical Perspective and Pathophysiological Implications. Cellular Physiology and Biochemistry, 2010, vol. 25, pp. 571-586.
- Duisters R.F., Tijsen A.J., Schroen B. et al. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res, 2009, vol.104, no. 2, pp. 170-178.
- Sucharov C., Bristow M.R., Port J.D. miRNA expression in the failing human heart: functional correlates. J. Mol. Cell. Cardiol, 2008, vol. 45, no. 2, pp. 185-192.
- Matkovich S.J., Wang W., Tu Y. et al. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ. Res, 2010, vol. 106, no. 1, pp. 166-175.
- Terentyev D., Belevych A.E., Terentyeva R. et al. miR-1 overexpression enhances Ca(2+) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII-dependent hyperphosphorylation of RyR2. Circ Res, 2009, vol. 104, no. 4, pp. 514-521.
- Yang B., Lin H., Xiao J. et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nature Medicine, 2007, vol. 13, no. 4, pp. 486-491.
- Pizzale S., Gollob M.H., Gow R., Birnie D.H. Sudden death in a young man with catecholaminergic polymorphic ventricular tachycardia and paroxysmal atrial fibrillation. J. Cardiovasc. Electrophysiol, 2008, vol.19, no.12, pp. 1319-1321.
- Sayed D., Rane S., Lypowy J. et al. MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Mol. Biol. Cell, 2008, vol.19, no. 8, pp. 3272-3282.
- Roy S., Khanna S., Hussain S.R. et al. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res, 2009, vol. 82, no. 1, pp. 21-29.
- Nakao K., Minobe W., Roden R. et al. Myosin heavy chain gene expression in human heart failure. J. Clin Invest, 1997, vol. 100, no. 9, pp. 2362-2370.
- Callis T.E., Pandya K., Seok H.Y. et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin Invest, 2009, vol. 119, no. 9, pp. 2772-2786.
- Shyu K.G., Lu M.J., Wang B.W. et al. Myostatin expression in ventricular myocardium in a rat model of volume-overload heart failure . Eur. J. Clin. Invest, 2006, vol. 36, no. 10, pp. 713-719.
- van Rooij E., Sutherland L.B., Liu N. et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA, 2006, vol. 103, no. 48, pp. 18255-18260.
- van Rooij E., Sutherland L.B., Thatcher J.E. et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 35, pp. 13027-13032.
- Divakaran V., Adrogue J., Ishiyama M. et al. Adaptive and maladptive effects of SMAD3 signaling in the adult heart after hemodynamic pressure overloading. Circ. Heart Fail, 2009, vol. 2, no.6, pp. 633-642.
- Lu Y., Zhang Y., Wang N. et al. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation, 2010, vol. 122, no. 23, pp. 2378-2387.
- Wang J.X., Q Jiao J., Li Q. et al. miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat. Med, 2011, vol. 17, no. 1, pp. 71-78.
- Aushev V.N. MicroRNA: small molecules with a large value. Klin. onkogematol. Fund. issled. i klin. prakt, 2015, vol. 8, no. 1, pp. 1-12 (in Russ.).