pm mfvt1
    • Main page
      • About journal
      • Articles. Working with contents
      • Editor-in-chief
      • Editorial Council
      • Editorial Board


      • For authors
      • Standards for formatting information
      • Reviewing
      • Politics editorial board
      • Ethics of journal publications


      • For advertisers
      • Subscription
      • About the Publishing House
      • Contact us
  • Primary hyperoxaluria: diagnostics, treatment, outcomes

    Редактор | 2020, Practical medicine part 18 №6. 2020 | 30 ноября, 2020

    S.V. BAIKO

    Belarusian State Medical University, Minsk

    Contact details:

    Baiko S.V. — MD, Professor of the 1st Department of Pediatrics

    Address: 19 Narochanskaya St., Belarus, Minsk, 220020, tel.: +375-17-250-37-61, e-mail: [email protected]

    Primary hyperoxaluria (PH) is a rare autosomal recessive disease caused by defects in liver glyoxylate metabolism and leading to overproduction of oxalates. Of the three types of PH, type I is the most common and severe form of the disease, which is caused by deficiency or loss of the liver-specific, vitamin B6-dependent, peroxisomal enzyme alanine-glyoxylateaminotransferase (AGT). In all types of PH, urinary excretion of oxalate is strongly elevated (> 1 mmol /1,73 m2/24 h), which results in recurrent urolithiasis and/or progressive nephrocalcinosis and subsequently, with a decrease in glomerular filtration rate (GFR), to the deposition of oxalates in the tissues of the body and the development of systemic oxalosis. PH type I is diagnosed late, in > 30% of patients already at the terminal stage of renal disease (ESRD). Every fourth patient with PH type II achieves ESRD, but cases of ESRD in type III are extremely rare.

    The diagnosis of PH is based on clinical and imaging (ultrasound, X-ray, CT scan) findings, urine oxalate assessment, genetic analysis.

    Early initiation of conservative treatment (high fluid intake, sodium citrate, etc.) is aimed at preserving renal function. Pyridoxine treatment can be effective in about 30% of patients with PH type I. Time on dialysis in anticipation of transplantation should be short to avoid overt systemic oxalosis. Transplantation methods depend on the type of PH and on the degree of GFR reduction, but combined liver and kidney transplantation is the method of choice in patients with primary hyperoxaluria type I.

    High index of clinical suspicion of PH must be in patients with nephrocalcinosis and/or recurrent urolithiasis, especially if urinary stones are predominantly whewellite (calcium oxalate monohydrate) in order to start early conservative treatment and preserve kidney function.

    Key words: primary hyperoxaluria, diagnostics, treatment, liver and kidney transplantation.

    REFERENCES

    1. Bhasin B., Ürekli H.M., Atta M.G. Primary and secondary hyperoxaluria: Understanding the enigma. 1. World J1.        HYPERLINK, available at: https://www.ncbi.nlm.nih.gov/pubmed/25949937″1. 1.      HYPERLINK, available at: https://www.ncbi.nlm.nih.gov/pubmed/25949937″1.          Nephrol, 2015, vol. 4 (2), pp. 235–244.
    2. Hoppe B. An update on primary hyperoxaluria // Nat. Rev. Nephrol, 2012, vol. 8 (8), pp. 467–475.
    3. Cochat P., Hulton S.A., Acquaviva C. et al. Primary hyperoxaluria Type 1: indications for screening and guidance for diagnosis and treatment. Nephrol. Dial. Transplant, 2012, vol. 27 (5), pp. 1729–1736.
    4. Papizh S.V., Prikhodina L.S., Zakharova E.Yu. et al. Clinical and genetic heterogeneity of type 1 primary hyperoxaluria. Klinicheskaya nefrologiya, 2011, no. 4, pp. 63–69 (in Russ.).
    5. Cochat P., Rumsby G. Primary hyperoxaluria. N. Engl. J. Med, 2013, vol. 369 (7), pp. 649–658.
    6. Milliner D.S., Harris P.C., Cogal A.G. et al. Primary Hyperoxaluria Type 1. Gene Reviews®. HYPERLINK, available at: https://www.ncbi.nlm.nih.gov/books/NBK1283/»6  1283/ (accessed on: 01.11.2020).
    7. Rumsby G. Hulton S.A. Primary hyperoxaluria Type 2. Gene Reviews® HYPERLINK, available at: https://www.ncbi.nlm.nih.gov/books/NBK2692/»7  (accessed on: 01.11.2020).
    1. Milliner D.S., Harris P.C., Lieske J.C. Primary Hyperoxaluria Type 3. Gene Reviews®, available at: https://www.ncbi.nlm.nih.gov/books/NBK316514/»8  (accecced on: 01.11.2020).
    1. Riedel T.J., Johnson L.C., Knight J. et al. Structural and Biochemical Studies of Human 4-hydroxy-2-oxoglutarate Aldolase: Implications for Hydroxyproline Metabolism in Primary Hyperoxaluria. PLoS One, 2011, vol. 6 (10), p. e26021.
    2. Danpure C.J. Advances in the enzymology and molecular genetics of primary hyperoxaluria type 1. Prospects for gene therapy. Nephrol. Dial. Transplant, 1995, vol. 10 (8), pp. 24–29.
    3. Hoppe B., Langman C.B. A United States survey on diagnosis, treatment, and outcome of primary hyperoxaluria. Pediatr. Nephrol, 2003, vol. 18 (10), pp. 986–991.
    4. Belostotsky R., Seboun E., Idelson G.H. et al. Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am. J. Hum. Genet, 2010, vol. 87 (3), pp. 392–399.
    5. Williams E.L., Acquaviva C., Amoroso A. et al. Primary hyperoxaluria type 1: update and additional mutation analysis of the AGXT gene. Hum. Mutat, 2009, vol. 30 (6), pp. 910–917.
    6. Singh P., Chebib F., Cogal A. et al.Pyridoxine responsiveness in Type 1 Primary Hyperoxaluria patient with rare (atypical) AGXT gene mutation. Kidney International Reports, 2020. DOI: https://doi.org/10.1016/j.ekir.2020.04.004
    7. Monico C.G., Rossetti S., Schwanz H.A. et al. Comprehensive mutation screening in 55 probands with type 1 primary hyperoxaluria shows feasibility of a gene-based diagnosis. J. Am. Soc. Nephrol, 2007, vol. 18 (6), pp. 1905–1914.
    8. Monico C.G., Rossetti S., Olson J.B. et al. Pyridoxine effect in type I primary hyperoxaluria is associated with the most common mutant allele. Kidney Int, 2005, vol. 67 (5), pp. 1704–1709.
    9. Harambat J., Fargue S., Acquaviva C. et al. Genotype-phenotype correlation in primary hyperoxaluria type 1: the p.Gly170Arg AGXT mutation is associated with a better outcome. Kidney Int, 2010, vol. 77 (5), pp. 443–449.
    10. Cellini B., Montioli R., Paiardini A. et al. Molecular Insight into the Synergism between the Minor Allele of Human Liver Peroxisomal Alanine: Glyoxylate Aminotransferase and the F152I Mutation. J. Biol. Chem, 2009, vol. 284 (13), pp. 8349–8358.
    11. Hoppe B., Beck B.B., Milliner D.S. The primary hyperoxalurias. Kidney Int, 2009, vol. 75 (12), pp. 1264–1271.
    12. Tang X., Bergstralh E.J., Mehta R.A. et al. Nephrocalcinosis is a risk factor for kidney failure in primary hyperoxaluria. Kidney Int, 2015, vol. 87 (3), pp. 623–631.
    13. Perinpam M., Enders F.T., Mara K.C. et al. Plasma oxalate in relation to eGFR in patients with primary hyperoxaluria, enteric hyperoxaluria and urinary stone disease. Clin. Biochem, 2017, vol. 50 (18), pp. 1014–1019.
    14. Lieske J.C., Monico C.G., Holmes W.S. et al. International registry for primary hyperoxaluria. Am. J. Nephrol, 2005, vol. 25 (3), pp. 290–296.
    15. Hoppe B. Evidence of true genotype-phenotype correlation in primary hyperoxaluria type 1. Kidney Int, 2010, vol. 77 (5), pp. 383–385.
    16. Cochat P., Liutkus A., Fargue S. et al. Primary hyperoxaluria type 1: still challenging! Pediatr. Nephrol, 2006, vol. 21 (8), pp. 1075–1081.
    17. Millan M.T., Berquist W.E., So S.K. et al. One hundred percent patient and kidney allograft survival with simultaneous liver and kidney transplantation in infants with primary hyperoxaluria: a single-center experience. Transplantation, 2003, vol. 76 (10), pp. 1458–1463.
    18. Cochat P., Koch Nogueira P.C., Mahmoud M.A. et al. Primary hyperoxaluria in infants: medical, ethical, and economic issues. J. Pediatr, 1999, vol. 135 (6), pp. 746–750.
    19. Harambat J., van Stralen K.J., Espinosa L. et al. Characteristics and outcomes of children with primary oxalosis requiring renal replacement therapy. Clin. J. Am. Soc. Nephrol, 2012, vol. 7 (3), pp. 458–465.
    20. Hoppe B., Latta K., von Schnakenburg C. et al. Primary hyperoxaluria-the German experience. Am. J. Nephrol, 2005, vol. 25 (3), pp. 276–281.
    21. Hoppe B., Kemper M.J., Bökenkamp A. et al. Plasma calcium-oxalate saturation in children with renal insufficiency and in children with primary hyperoxaluria. Kidney Int, 1998, vol. 54 (3), pp. 921–925.
    22. Hoppe B., Kemper M.J., Bökenkamp A. et al. Plasma calcium oxalate supersaturation in children with primary hyperoxaluria and end-stage renal failure. Kidney Int, 1999, vol. 56 (1), pp. 268–274.
    23. Kemper M.J., Conrad S., Müller-Wiefel D.E. Primary hyperoxaluria type 2. Eur. J. Pediatr, 1997, vol. 156 (7), pp. 509–512.
    24. Williams E.L., Bagg E.A., Mueller M. et al. Performance evaluation of Sanger sequencing for the diagnosis of primary hyperoxaluria and comparison with targeted next generation sequencing. Mol. Genet. Genomic. Med, 2015, vol. 3 (1), pp. 69–78.
    25. Milliner D.S., Eickholt J.T., Bergstralh E.J. et al. Results of long-term treatment with orthophosphate and pyridoxine in patients with primary hyperoxaluria. N. Engl. J. Med, 1994, vol. 331 (23), pp. 1553–1558.
    26. Cochat P., Collard L.B. Primary hyperoxaluria. In: Pediatric Nephrology, 5th ed., Avner E.D., Harmon W.E., Niaudet P. (Eds), Lippincott Williams & Wilkins. Philadelphia, 2004.
    27. Milliner D., Hoppe B., Groothoff J. A randomised Phase II/III study to evaluate the efficacy and safety of orally administered Oxalobacterformigenes to treat primary hyperoxaluria. Urolithiasis, 2018, vol. 46 (4), pp. 313–323.
    28. Fargue S., Harambat J., Gagnadoux M.F. et al. Effect of conservative treatment on the renal outcome of children with primary hyperoxaluria type 1. Kidney Int, 2009, vol. 76 (7), pp. 767–773.
    29. Arvans D., Jung Y.C., Antonopoulos D. et al. Oxalobacter formigenes-Derived Bioactive Factors Stimulate Oxalate Transport by Intestinal Epithelial Cells. J. Am. Soc. Nephrol, 2017, vol. 28 (3), pp. 876–887.
    30. Miyata N., Steffen J., Johnson M.E. et al. Pharmacologic rescue of an enzyme-trafficking defect in primary hyperoxaluria 1. Proc. Natl. Acad. Sci. USA, 2014, vol. 111 (40), pp. 14406–14411.
    31. Liebow A., Li X., Racie T. et al. An Investigational RNAi Therapeutic Targeting Glycolate Oxidase Reduces Oxalate Production in Models of Primary Hyperoxaluria. J. Am. Soc. Nephrol, 2017, vol. 28 (2), pp. 494–503.
    32. Le Dudal M., Huguet L., Perez J. et al. Stiripentol protects against calcium oxalate nephrolithiasis and ethylene glycol poisoning. J. Clin. Invest, 2019, vol. 129 (6), pp. 2571–2577.
    33. Hoppe B., Graf D., Offner G. et al. Oxalate elimination via hemodialysis or peritoneal dialysis in children with chronic renal failure. Pediatr. Nephrol, 1996, vol. 10 (4), pp. 488–492.
    34. Marangella M., Petrarulo M., Cosseddu D. et al. Oxalate balance studies in patients on hemodialysis for type I primary hyperoxaluria. Am. J. Kidney Dis, 1992, vol. 19, no. 6, pp. 546–553.
    35. Bergstralh E.J., Monico C.G., Lieske J.C. et al. Transplantation outcomes in primary hyperoxaluria. Am. J. Transplant, 2010, vol. 10, no. 11, pp. 2493–2501.
    36. Brinkert F., Ganschow R., Helmke K. et al. Transplantation procedures in children with primary hyperoxaluria type 1: outcome and longitudinal growth. Transplantation, 2009, vol. 87, no. 9, pp. 1415–1421.
    37. Compagnon P., Metzler P., Samuel D. et al. Long-term results of combined liver-kidney transplantation for primary hyperoxaluria type 1: the French experience. Liver Transpl, 2014, vol. 20, no. 12, pp. 1475–1485.
    38. Lee E., Ramos-Gonzalez G., Rodig N. et al. Bilateral native nephrectomy to reduce oxalate stores in children at the time of combined liver-kidney transplantation for primary hyperoxaluriatype 1. Pediatr. Nephrol, 2018, vol. 33, no. 5, pp. 881–887.
    39. Cochat P., Fargue S., Harambat J. Primary hyperoxaluria type 1: strategy for organ transplantation. Curr. Opin. Organ. Transplant, 2010, vol. 15, no. 5, pp. 590–593.
    40. Sasaki K., Sakamoto S., Uchida H. et al. Two-step transplantation for primary hyperoxaluria: a winning strategy to prevent progression of systemic oxalosis in early onset renal insufficiency cases. Pediatr. Transplant, 2015, vol. 19, no. 1, pp. E1–6.
    41. Galanti M., Contreras A. Excellent renal function and reversal of nephrocalcinosis 8 years after isolated liver transplantation in an infant with primary hyperoxaluria type 1. Pediatr. Nephrol, 2010, vol. 25, no. 11, pp. 2359–2362.
    42. Perera M.T., Sharif K., Lloyd C. et al. Pre-emptive liver transplantation for primary hyperoxaluria (PH-I) arrests long-term renal function deterioration. Nephrol. Dial. Transplant, 2011, vol. 26, no. 1, pp. 354–359.
    43. Squires J., Nguyen C. Complexity of pre-emptive liver transplantation in children with primary hyperoxaluria type 1. Pediatr. Transplant, 2016, vol. 20, no. 5, pp. 604–606.
    44. Broyer M., Brunner F.P., Brynger H. et al. Kidney transplantation in primary oxalosis: data from the EDTA Registry. Nephrol. Dial. Transplant, 1990, vol. 5, no. 5, pp. 332–336.
    45. Lorenz E.C., Lieske J.C., Seide B.M. et al. Sustained pyridoxine response in primary hyperoxaluria type 1 recipients of kidney alone transplant. Am. J. Transplant, 2014, vol. 14, no. 6, pp. 1433–1438.
    46. Garrelfs S.F., Rumsby G., Peters-Sengers H. et al. Patients with primary hyperoxaluria type 2 have significant morbidity and require careful follow-up. Kidney Int, 2019, vol. 96, no. 6, pp. 1389–1399.
    47. Johnson S.A., Rumsby G., Cregeen D. et al. Primary hyperoxaluria type 2 in children. Pediatr. Nephrol, 2002, vol. 17, no. 8, pp. 597–601.
    48. Chlebeck P.T., Milliner D.S., Smith L.H. Long-term prognosis in primary hyperoxaluria type II (L-glycericaciduria). Am. J. Kidney Dis, 1994, vol. 23, no. 2, pp. 255–259.
    49. Rumsby G., Sharma A., Cregeen D.P. et al. Primary hyperoxaluria type 2 without L-glycericaciduria: is the disease under-diagnosed? Nephrol. Dial. Transplant, 2001, vol. 16, no. 8, pp. 1697–1699.
    50. Naderi G., Latif A., Tabassomi F. et al. Failure of isolated kidney transplantation in a pediatric patient with primary hyperoxaluria type 2. Pediatr. Transplant, 2014, vol. 18, no. 3, pp. E69–73.
    51. Dhondup T., Lorenz E.C., Milliner D.S. et al. Combined Liver-Kidney Transplantation for Primary Hyperoxaluria Type 2: A Case Report. Am. J. Transplant, 2018, vol. 18, no. 1, pp. 253–257.
    52. Beck B.B., Baasner A., Buescher A. et al. Novel findings in patients with primary hyperoxaluria type III and implications for advanced molecular testing strategies. Eur. J. Hum. Genet, 2013, vol. 21, no. 2, pp. 162–172.
    53. Fang X., He L., Xu G. et al. Nine novel HOGA1 gene mutations identified in primary hyperoxaluria type 3 and distinct clinical and biochemical characteristics in Chinese children. Pediatr. Nephrol, 2019, vol. 34, no. 10, pp. 1785–1790.
    54. Monico C.G., Rossetti S., Belostotsky R. et al. Primary hyperoxaluria type III gene HOGA1 (formerly DHDPSL) as a possible risk factor for idiopathic calcium oxalate urolithiasis. Clin. J. Am. Soc. Nephrol, 2011, vol. 6, no. 9, pp. 2289–2295.
    55. Greed L., Willis F., Johnstone L. et al. Metabolite diagnosis of primary hyperoxaluria type 3. Pediatr. Nephrol, 2018, vol. 33, no. 8, pp. 1443–1446.
    56. Allard L., Cochat P., Leclerc A.L. et al. Renal function can be impaired in children with primary hyperoxaluria type 3. Pediatr. Nephrol, 2015, vol. 30, no. 10, pp. 1807–1813.

    Метки: 2020, diagnostics, liver and kidney transplantation, Practical medicine part 18 №6. 2020, primary hyperoxaluria, S.V. BAIKO, treatment

    ‹ Effect of combined oral contraceptive containing 17β—estradiol on female sexual function, depression and quality of life Quasiallergy to β-lactam antibiotics as a predictor of therapeutic failures in the treatment of acute otitis media in children ›
    • rus Версия на русском языке


      usa English version site


      Findloupe

      

    • PARTNERS

      пов  logonew
    «Для
    Practical medicine. Scientific and practical reviewed medical journal
    All rights reserved ©