Possible prospects in the treatment of preeclampsia
A.A. KHASANOV1–3, K.I. GABDULLINA1, A.V. ARZAMASTSEVA1
1Kazan State Medical University, Kazan
2Kazan (Volga region) Federal University, Kazan
3Republic Clinical Hospital, Kazan
Contact details:
Khasanov A.A. — MD, Professor of the Department of Obstetrics and Gynecology, Chief Specialist, Chief Researcher
Address: 49 Butlerov St., Kazan, Russian Federation, 420012, tel.: +7-917-239-15-00, e-mail: albirkhasanov@mail.ru
Currently, the treatment of preeclampsia is based on the use of symptomatic therapy, and if it is ineffective, the only etiotropic method of treating preeclampsia is delivery. The drugs described in this review as a treatment for preeclampsia are able to affect certain pathogenetic links of the disease. The effect on endothelial dysfunction is achieved by reducing the secretion of soluble fms-like tyrosine kinase 1 and endoglin, enhancing the production of endogenous nitric monoxide, inhibiting the C5 component of the complement system, regulating the hemastasis system, and activating the mother’s immune cells, which is necessary for full trophoblast invasion. The therapeutic effect of the drugs under consideration allows assuming with cautious optimism that these drugs may be used in the treatment of preeclampsia.
Key words: pregnancy, preeclampsia, trophoblast.
REFERENCES
- Rodgers G.M., Taylor R.N., Roberts J.M. Preeclampsia is associated with a serum factor cytotoxic to human endothelial cells. Am. J. Obstet. Gynecol, 1988, vol. 159, pp. 908–914. DOI: 10.1016/S0002-9378(88)80169-8
- Roberts J.M., Escudero C. The placenta in preeclampsia. Pregnancy Hypertens, 2012, vol. 2, pp. 72–83. DOI: 10.1016/j.preghy.2012.01.001
- Choi J.W., Im M.W., Pai S.H. Nitric oxide production increases during normal pregnancy and decreases in preeclampsia. Ann. Clin. Lab. Sci, 2002, vol. 32, pp. 257–263.
- Tashie W., Fondjo L.A., Owiredu W.K.B.A., Ephraim R.K.D., Asare L., Adu-Gyamfi E.A., Seidu L. Altered bioavailability of nitric oxide and L-arginine is a key determinant of endothelial dysfunction in preeclampsia. Biomed. Res. Int, 2020, vol. 2020, 3251956. DOI: 10.1155/2020/3251956
- Schjetlein R, Haugen G, Wisløff F. Markers of intravascular coagulation and fibrinolysis in preeclampsia: association with intrauterine growth retardation. Acta Obstet. Gynecol. Scand, 1997, vol. 76 (6), pp. 541–546. DOI: 10.3109/00016349709024580
- Kobayashi T., Terao T., Ikenoue T., Sameshima H., Nakabayashi M., Kajiwara Y., Maki M. BI 51 017 Study Group. Treatment of severe preeclampsia with antithrombin concentrate: results of a prospective feasibility study. Semin. Thromb. Hemost, 2003, vol. 29 (6), pp. 645–652. DOI: 10.1055/s-2004-815632
- Barber A., Robson S.C., Myatt L., Bulmer J.N., Lyall F. Heme oxygenase expression in human placenta and placental bed: reduced expression of placenta endothelial HO-2 in preeclampsia and fetal growth restriction. Faseb. J, 2001, vol. 15, pp. 1158–1168.
- Kim H.P., Ryter S.W., Choi A.M. CO as a cellular signaling molecule. Annu. Rev. Pharmacol. Toxicol, 2006, vol. 46, pp. 411–449.
- Lavrovsky Y., Schwartzman M.L., Levere R.D., Kappas A., Abraham N.G. Identification of binding sites for transcription factors NF-kappa B and AP-2 in the promoter region of the human heme oxygenase 1 gene. Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 5987–5991.
- Wester-Rosenlöf L., Casslén V., Axelsson J., Edström-Hägerwall A., Gram M., Holmqvist M. et al. A1M/α1-microglobulin protects from heme-induced placental and renal damage in a pregnant sheep model of preeclampsia. PLoS One, 2014, vol. 9 (1), e86353. DOI: 10.1371/journal.pone.0086353
- Friedenstein A.J., Piatetzky-Shapiro I.I., Petrakova K.V. Osteogenesis in transplants of bone marrow cells. J. Embryol. Exp. Morphol, 1966, vol. 16, pp. 381–390.
- Fu L., Liu Y., Zhang D., Xie J., Guan H., Shang T. Beneficial effect of human umbilical cord-derived mesenchymal stem cells on an endotoxin-induced rat model of preeclampsia. Exp. Ther. Med, 2015, vol. 10 (5), pp. 1851–1856. DOI: 10.3892/etm.2015.2742
- Wang L.L., Yu Y., Guan H.B., Qiao C. Effect of human umbilical cord mesenchymal stem cell transplantation in a rat model of preeclampsia. Reprod. Sci, 2016, vol. 23 (8), pp. 1058–1070. DOI: 10.1177/1933719116630417
- Bohn H., Kraus W., Winckler W. Purification and characterization of two new soluble placental tissue proteins (PP13 and PP17). Oncodev. Biol. Med, 1983, vol. 4, pp. 343–350.
- Wortelboer E.J. et al. First-trimester placental protein 13 and placental growth factor: markers for identification of women destined to develop early-onset pre-eclampsia. BJOG, 2010, vol. 117, pp. 1384–1389.
- Gizurarson S., Sigurdardottir E.R., Meiri H., Huppertz B., Sammar M., Sharabi-Nov A. et al. Placental protein 13 administration to pregnant rats lowers blood pressure and augments fetal growth and venous remodeling. Fetal. Diagn. Ther, 2016, vol. 39 (1), pp. 56–63. DOI: 10.1159/000381914