Peculiarities of sensitization to milk proteins in healthy babies living in different megalopolises of the Russian Federation
O.V. TARASOVA1, S.N. DENISOVA1, V.A. REVYAKINA2, E.S. SAKHAROVA1, T.A. SHUMATOVA3, A. NI3, S.L. MOROZOV1
1Pirogov Russian National Research Medical University, Moscow
2Federal Research Centre of Nutrition and Biotechnology, Moscow
3Pasific State Medical University, Vladivostok
Contact details:
Denisova S.N. — MD, Professor of the Department of Hospital Pediatrics No. 2
Address: 1 Ostrovityanov St., Moscow, Russian Federation, 117997, tel.: +7 (495) 254-25-83, e-mail: sndenisova@yandex.ru
There is no clear answer so far, why, under normal conditions, there is no active immune response to food antigens that are supplied daily with food, while oral tolerance develops in a child. A cohort study of 259 healthy children of the first half year of life who lived in different megalopolises of the Russian Federation showed a high frequency of latent (asymptomatic) sensitization (LS) to milk proteins, which was formed under breast feeding. Despite the transfer to bottle feeding, there was a statistically significant decrease in the frequency of LS to cow and goat milk proteins in babies from Moscow by 5 months of age, and in babies from St. Petersburg by 6 months of age. The frequency of LS to casein, β-LG and α-LA in breastfed babies from Vladivostok during the first three months of life was statistically significantly higher than in babies from Kazan and Khabarovsk during the entire observation period. The data obtained indicate that the immune mechanisms forming latent (asymptomatic) sensitization in the observed children were of an indirect nature, and their implementation was a response to the exposure of maternal allergens that entered the baby’s body in the antenatal and postnatal periods.
Key words: food sensitization, children of the first year of life.
REFERENCES
- Wilson E., Butcher E.C. CCL28 controls immunoglobulin (Ig) A plasma cell accumulation in the lactating mammary gland and IgA antibody transfer to the neonate. J. Exp. Med, 2004, vol. 200 (6), pp. 805–809. DOI: 10.1084/jem.20041069
- Arpaia N., Campbell C., Fan X., Dikiy S., van der Veeken J., deRoos P., Liu H., Cross J.R., Pfeffer K., Coffer P.J., Rudensky A.Y. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 2013, vol. 504 (7480), pp. 451–455. DOI: 10.1038/nature12726
- Oral microbiota maturation during the first 7 years of life in «https://pubmed.ncbi.nlm.nih.gov/29602225/?from_term=the+gastrointestinal+tract+in+the+first+months+of+an+infant%27s+life+and+antigens&from_pos=4″relation to allergy development. Allergy, 2018, vol. 73 (10), pp. 2000–2011. DOI: 10.1111/all.13449
- Glanz J.M., Newcomer S.R., Daley M.F., DeStefano F., Groom H.C., Jackson M.L., Lewin B.J., McCarthy N.L., McClure D.L., Narwaney K.J., Nordin J.D., Zerbo O. Association Between Estimated Cumulative Vaccine Antigen Exposure Through the First 23 Months of Life and Non-Vaccine-Targeted Infections From 24 Through 47 Months of Age. JAMA, 2018, vol. 319 (9), pp. 906–913. DOI: 10.1001/jama.2018.0708
- Balabolkin I.I. Children’s allergology: current problems and development prospects. Allergologiya i immunologiya v pediatrii, 2006, no. 2–3 (9), pp. 7–11 (in Russ.).
- Forchielli M.L., Walker W.A. The role of gut-associated lymphoid tissues and mucosal defence. Br. J.Nutr, 2005, vol. 93, suppl 1, pp. S41–48. DOI: 10.1079/bjn20041356
- Luss L.V., Khoroshilova N.V. Prakticheskoe posobie po klinicheskoy immunologii i allergologii [A practical guide to clinical immunology and allergology]. Torus-Press, 2005. 176 p.
- Ygberg S., Nilsson A. The developing immune system — from foetus to toddler. Acta Paediatr, 2012, vol. 101 (2), pp. 120–127. DOI: 10.1111/j.1651-2227.2011.02494.x
- Hsu P., Nanan R. Foetal immune programming: hormones, cytokines, microbes and regulatory T cells. J Reprod Immunol, 2014, vol. 104–105, pp. 2–7. DOI: 10.1016/j.jri.2014.02.005
- Madeleine F. Jennewein, Bahaa Abu-Raya, Yiwei Jiang, Galit Alter, Arnaud Marchant. Transfer of maternal immunity and programming of the newborn immune system. Semin Immunopathol, 2017, vol. 39 (6), pp. 605–613. DOI: 10.1007/s00281-017-0653-x
- Moraes-Pinto M.I., Suano-Souza F., Aranda C.S. Immune system: development and acquisition of immunological competence. J Pediatr (Rio J), 2021, vol. 97, suppl 1, pp. S59–S66. DOI: 10.1016/j.jped.2020.10.006
- Gonzalez C.A., Gonzalez S. Fetal and neonatal allo-immune response. Transfus Apher Sci, 2020, vol. 59 (5), pp. 102945. DOI: 10.1016/j.transci.2020.102945
- Mold J.E., Michaëlsson J., Burt T.D., Muench M.O., Beckerman K.P., Busch M.P., Tzong-Hae Lee, NixonD.F., McCuneet J.M. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science, 2008, vol. 322 (5907), pp. 1562–1565. DOI: 10.1126/science.1164511
- Mold J.E., Venkatasubrahmanyam S., Burt T.D., Michaëlsson J., Rivera J.M., Galkina S.A., Weinberg K., Stoddart C.A., McCune J.M. Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans. Science, 2010, vol. 330 (6011), pp. 1695–1699. DOI: 10.1126/science.1196509
- Lio C.W., Hsieh C.S. A two-step process for thymic regulatory T cell development. Immunity, 2008, vol. 28 (1), pp. 100–111. DOI: 10.1016/j.immuni.2007.11.021
- Santner-Nanan B., Straubinger K., Hsu P., Parnell G., Tang B., Xu B., Makris A., Hennessy A., Peek M.J., Busch D.H., Prazeres da Costa C., Nanan R. Fetal-maternal alignment of regulatory T cells correlates with IL-10 and Bcl-2 upregulation in pregnancy. J Immunol., 2013, vol. 191 (1), pp. 145–153. DOI: 10.4049/jimmunol.1203165
- Al Nabhani Z., Eberl G. Imprinting of the immune system by the microbiota early in life. Mucosal Immunol, 2020, vol. 13 (2), pp. 183–189. DOI: 10.1038/s41385-020-0257-y
- Mandal M., Donnelly R., Elkabes S., Zhang P., Davini D., David B.T., Ponzio N.M. Maternal immune stimulation during pregnancy shapes the immunological phenotype of offspring. Brain Behav Immun, 2013, vol. 33, pp. 33–45. DOI: 10.1016/j.bbi.2013.04.012
- Herberth G., Hinz D., Röder S., Schlink U., Sack U., Diez U., Borte M., Lehmann I. Maternal immune status in pregnancy is related to offspring’s immune responses and atopy risk. Allergy, 2011, vol. 66 (8), pp. 1065–1074. DOI: 10.1111/j.1398-9995.2011.02587.x
- Sommanus S., Kerddonfak S., Kamchaisatian W., Vilaiyuk S., Sasisakulporn C., Teawsomboonkit W., Benjaponpitak S. Cow’s milk protein allergy: immunological response in children with cow’s milk protein tolerance. Asian Pac J. Allergy Immunol, 2014, vol. 32 (2), pp. 171–177. DOI: 10.12932/AP0319.32.2.2013
- Yu Z., Chen J., Zhang Q., Yin X., Wang Y., Fu J., Zou L., Kong W. Maternofetal transfer of antibodies and the influence of maternal atopic status on the neonate. Am. J. Rhinol. Allergy, 2015, vol. 29 (2), pp. 119–123. DOI: 10.2500/ajra.2015.29.4139
- Poryadin G.V., Salmasi Zh.M., Kazimirskiy A.N., Semenova A.Yu. Immunopathogenesis of the formation of atopic diseases. Byul. sib. med, 2017, no. 16 (4), pp. 233–241 (in Russ.). DOI: 10.20538/1682-0363-2017-4-233-241
- Tordesillas L., Berin M.C. Mechanisms of Oral Tolerance. Clin Rev Allergy Immunol., 2018, vol. 55 (2), pp. 107–117. DOI: 10.1007/s12016-018-8680-5
- Sricharunrat T., Pumirat P., Leaungwutiwong P. Oral tolerance: Recent advances on mechanisms and potential applications. Asian Pac J Allergy Immunol, 2018, vol. 36 (4), pp. 207–216. DOI: 10.12932/AP0848
- Prescott S.L., Smith P., Tang M., Palmer D.J., Sinn J., Huntley S.J., Cormack B., Heine R.G., Gibson R.A., Makrides M. The importance of early complementary feeding in the development of oral tolerance: concerns and controversies. Pediatr. Allergy Immunol, 2008, vol. 19 (5), pp. 375–380. DOI: 10.1111/j.1399-3038.2008.00718.x
- Wambre E., Jeong D. Oral Tolerance Development and Maintenance. Immunol Allergy Clin North Am, 2018, vol. 38 (1), pp. 27–37. DOI: 10.1016/j.iac.2017.09.003
- Commins S.P. Mechanisms of Oral Tolerance. Pediatr. Clin. North Am, 2015, vol. 62 (6), pp. 1523–1529. DOI: 10.1016/j.pcl.2015.07.013