Pathogenetic mechanisms and basic approaches to Doppler diagnostics of prenatal centralization of blood circulation in fetal growth restriction syndrome
Yu.A. STEPANOVA1, V.I. SEMINA2
1A.V. Vishnevsky National Medical Research Center of Surgery, Moscow,
2Mordovian Republican Central Clinical Hospital, Saransk
Contact:
Semina V.I. ― sonologist of Prenatal Centre Genetic Counseling
Address: 18 Pobedy Str., 430013, Saransk, Russian Federation, tel. +7-926-893-43-65, e-mail: vika_smily@mail.ru
Fetal growth restriction (FGR) is a common complication of pregnancy and, in severe cases, is associated with high frequency of perinatal mortality, neonatal morbidity and poor neurodevelopmental outcomes in children. The leading cause of FGR is placental insufficiency, in which the placenta is not able to adequately satisfy the growing fetus oxygen and nutrient requirements during pregnancy. In conditions of reduced placental perfusion, chronic hypoxia induces a decrease in fetal growth, and a redistribution of blood flow preferentially to the brain. However, this intrauterine adaptation cannot fully compensate for the negative influence of hypoxia. Early detection of brain injuries in FGR is a relevant problem allowing for the prediction of adverse prenatal outcomes and optimization of pregnancy management. Today, the Doppler examination is an important tool for evaluation of normal and complicated pregnancies allowing appropriate characterization of the fetal status, detection and investigation of the fetal protective mechanisms or decompensation.
Key words: intrauterine fetal growth restriction (IUGR), brain sparing effect, fetal cerebral Doppler velocimetry; cerebrovascular circulation; fetal cerebral circulation; fetal cerebral arteries.
REFERENCES
- Yellapragada L.N., Koripally J., Chinthaparthi M.R. Fetal outcome in relation with Colour Doppler study of middle cerebral artery and umblical artery in intrauterine growth restriction. International. J. Res. Med. Sci, 2015, no. 3 (7), pp. 1721-1725. DOI: 10.18203/2320-6012.ijrms20150259
- Rasyid H., Bakri S. Intra-uterine Growth Retardation and Development of Hypertension. J. ActaMedicaIndonesiana, 2016, no. 48, pp. 320-324.
- Degtyareva E.A, Zakharova O.A., Kufa M.A., Kantemirova M.G., Radzinskiy V.E. The effectiveness of prediction and early diagnosis of fetal growth retardation. Rossiyskiy vestnik perinatologii i pediatrii, 2018, no. 63 (6), pp. 37-45 (in Russ.).Doi: 10.21508/1027-4065-2018-63-5-37-45
- Henrichs J., Verfaille V., Viester L. Westerneng M., Molewijk B., Franx A., van der Horst H.,Bosmans J.E., de Jonge A., Jellema P., IRIS Study Group. Effectiveness and cost-effectiveness of routine third trimester ultrasound screening for intrauterine growth restriction: study protocol of a nationwide stepped wedge cluster-randomized trial in The Netherlands (The IRIS Study). BMC pregnancy and childbirth, 2016, no. 16: 310.doi: 10.1186/s12884-016-1104-8.
- Popova N.G., Ignatko I.V., Afanas’eva N.V. The use of ultrasound and Doppler studies of the fetus for prenatal diagnosis of CNS lesions in premature newborns. Zdorov’e i obrazovanie v XXI veke, 2016, no. 18 (2), pp. 193-198 (in Russ.).
- Fomina M.P., Matskevich N.V. Predictive value of 2D dopplerometry of fetal-placental blood flow for perinatal outcomes in fetal growth retardation. Vestnik Vitebskogo gosudarstvennogo universiteta, 2019, no. 1, pp. 39-45 (in Russ.). doi: 10.22263/2312-4156.2019.1.39
- Fardiazar Z., Atashkhouei S., Yosefzad Y. Comparison of fetal middle cerebral arteries, umbilical and uterin artery color Doppler ultrasound with blood gas analysis in pregnancy complicated by IUGR. Iran J ReprodMed, 2013, no. 11 (1), pp. 47-51.
- Muresan D., Rotar I.C., Stamatian F. The usefulness of fetal Doppler evaluation in early versus late onset intrauterine growth restriction. Review of the literature. J. Med. ultrasonography, 2016, no. 18, p. 103. doi: 10.11152/mu.2013.2066.181.dop
- Zhelezova M.E., Zefirova T.P., Kanyukov S.S. Fetal growth retardation: modern approaches to the diagnosis and management of pregnancy. Prakticheskaya meditsina, 2019, no. 17 (4), pp. 8-14 (in Russ.).doi: 10.32000/2072-1757-2019-4-8-14
- Bakalis S., Akolekar R., Gallo D.M.,Poon L.C.,Nicolaides K.H. Umbilical and fetal middle cerebral artery Doppler at 30–34 weeks’ gestation in the prediction of adverse perinatal outcome. J Obstet Gynecol, 2015, no. 45 (4), pp. 209-220.doi: 10.1002/uog.14822
- Miller S.L., Huppi P.S., Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J. Physiol, 2016, no. 594 (4), pp. 807-823. doi: 10.1113/JP271402
- Atul M., Michael D., Michael C.F.,Castillo-Melendez M., Allison B.J., Polglase G.R., Wallace E.M., Hodges R., Jenkin G., Miller S.L. Detection and assessment of brain injury in the growth-restricted fetus and neonate. J. Pediatr. Res, 2017, no. 82 (2), pp. 184-193. doi: 10.1038/pr.2017.37
- Murray E., Fernandes M., Fazel M., Kennedy S.H., Villar J., Stein A. Differential effect of intrauterine growth restriction on childhood neurodevelopment: a systematic review. J. Bjog, 2015, no. 122 (8), P. 1062-1072. doi: 10.1111/1471-0528.13435
- Baschat A.A. Neurodevelopment after fetal growth restriction. J. Fetal DiagnTher, 2014, no. 36, pp. 136-142.doi: 10.1159/000353631
- Oros D., Figueras F., Cruz-Martinez R., Padilla N., Meler E., Hernandez-Andrade E., Gratacos E. Middle versus anterior cerebral artery Doppler for the prediction of perinatal outcome and neonatal neurobehavior in term small-for-gestational-age fetuses with normal umbilical artery Doppler. Ultrasound in obstetrics & gynecology: the official journal of the International Society of Ultrasound in Obstetrics and Gynecology, 2010, no. 35 (4), pp. 456-461. doi: 10.1002/uog.7588
- Zamaleeva R.S., Mal’tseva L.I., Cherepanova N.A. The state of the problem of treatment and prediction of fetal growth retardation. Prakticheskaya meditsina, 2016, no. 1, pp. 41-44 (in Russ.).
- Goryunova A.G., Simonova M.S., Murashko A.V. Fetal growth retardation syndrome and adaptation of the placenta. Arkhiv akusherstva i ginekologii im. V.F. Snegireva, 2016, no. 3 (2), pp. 76-80 (in Russ.).doi: 10.18821/2313-8726-2016-3-2-76-80
- Blair E.M., Nelson K.B. Fetal growth restriction and risk of cerebral palsy in singletons born after at least 35 weeks’ gestation. J ObstetGynecol, 2015, no. 212 (4), pp. 520.e1-7. doi: 10.1016/j.ajog.2014.10.1103.
- Emily C., Willem B., Frank B. Brain-Sparing in Intrauterine Growth Restriction: Considerations for the Neonatologist. Neonatology, 2015, 108: 269-276. doi: 10.1159/000438451
- Wibbeke D., Hammer K., Mollers M., Braun J., Koster H.A., Falkenberg M.K., de Murcia K.O., Borowski M., Klockenbusch W., Schmitz R. Assessment of the Fetal Cerebral Artery Importance of Doppler Preset Settings. J. Ultr. Inmed, 2018, no. 37 (3), pp. 621-628.
- Semina V.I., Stepanova Yu.A. Perinatal hypoxia: pathogenetic aspects and approaches to diagnosis (literature review). Part I. Meditsinskaya vizualizatsiya, 2015, no. 2, pp. 95-105 (in Russ.).
- Flood K., Unterscheider J., Daly S., Geary M.P., Kennelly M.M., McAuliffe F.M., O’Donoghue K., Hunter A., Morrison J.J., Burke G., Dicker P., Tully E.C., Malone F.D. The role of brain sparing in the prediction of adverse outcomes in intrauterine growth restriction: results of the multicenter PORTO Study. Am J. ObstetGynecol, 2014, no. 211 (3), pp. 288.e1-5. doi: 10.1016/j.ajog.2014.05.008.
- Fleiss B., Wong F., Brownfoot F., Shearer I.K., Baud O., Walker D.W., Gressens P., Tolcos M. Knowledge Gaps and Emerging Research Areas in Intrauterine Growth Restriction-Associated Brain Injury. FrontEndocrinol (Lausanne), 2019, no. 10, p. 188. doi: 10.3389/fendo.2019.00188
- Accrombessi M., Zeitlin J., Massougbodji A., Cot M., Briand V. What Do We Know about Risk Factors for Fetal Growth Restriction in Africa at the Time of Sustainable Development Goals? A Scoping Review. PaediatrPerinatEpidemiol, 2018, no. 32 (2), pp. 184-196. doi:10.1111/ppe.12433
- Beukers F., Aarnoudse-Moens C.S.H., van Weissenbruch M.M., Ganzevoort W., van Goudoever J.B., van Wassenaer-Leemhuis A.G. Fetal Growth Restriction with Brain Sparing: Neurocognitive and Behavioral Outcomes at 12 Years of Age. J Pediatr, 2017, no. 188, pp. 103-109.e2. doi:10.1016/j.jpeds.2017.06.003
- Mcintyre S., Badawi N., Blair E., Nelson K.B. Does aetiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy influence the outcome of treatment? DevMedChildNeurol, 2015, no. 57, suppl 3, pp. 2-7. doi:10.1111/dmcn.12725
- Cruz-Martinez R., Figueras F., Oros D., Padilla N., Meler E., Hernandez-Andrade E., Gratacos E. Cerebral blood perfusion and neurobehavioral performance in full-term small-for-gestational-age fetuses. American journal of obstetrics and gynecology, 2009, no. 201 (5), pp. 474.e1-474.e4747. doi: 10.1016/j.ajog.2009.05.028
- Devaskar S.U., Chu A. Intrauterine growth restriction: hungry for an answer. Physiology (Bethesda), 2016, no. 31 (2), pp. 131-146. doi: 10.1152/physiol.00033.2015.
- Spinillo A., Gardella B., Bariselli S., Alfei A., Silini E.M., Bello B.D. Cerebroplacental Doppler ratio and placental histopathological features in pregnancies complicated by fetal growth restriction. J PerinatMed, 2014, no. 42 (3), pp. 321-328. doi:10.1515/jpm-2013-0128
- Ageeva M.I. Diagnosticheskoe znachenie dopplerografii v otsenke funktsional’nogo sostoyaniya ploda: diss. … d-ra med. nauk [Diagnostic value of dopplerography in assessing the functional state of the fetus. Synopsis of dis. Dr med. sciences]. Moscow, 2008. 296 p.
- Ishii H., Takami T., Fujioka T., Mizukaki N., Kondo A., Sunohara D., Hoshika A., Akutagawa O., Isaka K. Comparison of changes in cerebral and systemic perfusion between appropriate- and small-for-gestational-age infants during the first three days after birth. Brain Dev, 2014, no. 36 (5), pp. 380-387. doi: 10.1016/j.braindev.2013.06.006.
- Flood K., Unterscheider J., Daly S., Geary M.P., Kennelly M.M., McAuliffe M.F., O’Donoghue K., Hunter A., Morrison J.J., Burke G., Dicker P., Tully E. C, Malone F. D. The role of brain sparing in the prediction of adverse outcomes in intrauterine growth restriction: results of the multicenter PORTO Study. Am J Obstet Gynecol, 2014, no. 211, p. 288.
- Kozlova E.M. Osobennosti pozdnego neonatal’nogo perioda u novorozhdennykh, perenesshikh tyazheluyu perinatal’nuyu gipoksiyu: diss. dokt. … med. nauk [Features of the late neonatal period in newborns who have undergone severe perinatal hypoxia. Synopsis of dis. Dr med. sciences]. Nizhniy Novgorod: 2009. 304 p.
- Thompson J.A., Richardson B.S., Gagnon R., Regnault T.R. Chronic intrauterine hypoxia interferes with aortic development in the late gestation ovine fetus. J Physiol, 2011, no. 589 (Pt 13), pp. 3319-3332. doi: 10.1113/jphysiol.2011.210625
- Fouzas S., Karatza A.A., Davlouros P.A., Chrysis D., Alexopoulos D., Mantagos S., Dimitriou G. Neonatal cardiac dysfunction in intrauterine growth restriction. PediatrRes, 2014, no. 75 (5), pp. 651-657. doi: 10.1038/pr.2014.22.
- Figueras F., Gratacós E. Update on the diagnosis and classification of fetal growth restriction and proposal of a stage-based management protocol. FetalDiagnTher, 2014, no. 36 (2), pp. 86-98. doi: 10.1159/000357592
- Cruz-Martinez R., Tenorio V., Padilla N., Crispi F., Figueras F., Gratacos E. Risk of ultrasound-detected neonatal brain abnormalities in intrauterine growth-restricted fetuses born between 28 and 34 weeks’ gestation: relationship with gestational age at birth and fetal Doppler parameters. UltrasoundObstetGynecol, 2015, no. 46 (4), pp. 452-459. doi: 10.1002/uog.14920.
- Gordijn S.J., Beune I.M., Thilaganathan B., Papageorghiou A., Baschat A.A., Baker P.N., Silver R.M., Wynia K., Ganzevoort W. Consensus definition of fetal growth restriction: a Delphi procedure. UltrasoundObstetGynecol, 2016, no. 48 (3), pp. 333-339. doi: 10.1002/uog.15884.
- Roza S.J., Steegers E.A., Verburg B.O., Jaddoe V.W., Moll H.A., Hofman A., Verhulst F.C, Tiemeier H. What is spared by fetal brain-sparing? Fetal circulatory redistribution and behavioral problems in the general population. Am J Epidemiol, 2008, no. 168 (10), pp. 1145-1152. doi: 10.1093/aje/kwn233.
- Semina V.I., Stepanova Yu.A. Perinatal hypoxia: pathogenetic aspects and approaches to diagnosis (literature review). Part 2 . Chast’ 2. Meditsinskaya vizualizatsiya, 2015, no. 3, pp. 97-104 (in Russ.).
- Aditya I., Tat V., Sawana A., Mohamed A., Tuffner R., Mondal T. Use of Doppler velocimetry in diagnosis and prognosis of intrauterine growth restriction (IUGR): A Review. J Neonatal Perinatal Med, 2016, no. 9 (2), pp. 117-126. doi: 10.3233/NPM-16915132.
- Castillo-Melendez M., Yawno T., Allison B.J., Jenkin G., Wallace E.M., Miller S.L. Cerebrovascular adaptations to chronic hypoxia in the growth restricted lamb. Int J DevNeurosci. 2015, no. 45, pp. 55-65. doi: 10.1016/j.ijdevneu.2015.01.004.
- Levine T.A., Grunau R.E., McAuliffe F.M., Pinnamaneni R., Foran A., Alderdice F.A. Early childhood neurodevelopment after intrauterine growth restriction: a systematic review. Pediatrics, 2015, no. 135 (1), pp. 126-141. doi: 10.1542/peds.2014-1143.
- Gerstner B., DeSilva T.M., Genz K., Armstrong A., Brehmer F., Neve R.L., Felderhoff-Mueser U., Volpe J.J., Rosenberg P.A. Hyperoxia causes maturation-dependent cell death in the developing white matter. Version 2. J Neurosci, 2008, no. 28 (5), pp. 1236-1245. doi: 10.1523/JNEUROSCI.3213-07.2008.
- Yiş U., Kurul S.H., Kumral A., Cilaker S., Tuğyan K., Genç S., Yilmaz O. Hyperoxic exposure leads to cell death in the developing brain. BrainDev, 2008, no. 30 (9), pp. 556-562. doi: 10.1016/j.braindev.2008.01.010.