pm mfvt1
    • Main page
      • About journal
      • Articles. Working with contents
      • Editor-in-chief
      • Editorial Council
      • Editorial Board


      • For authors
      • Standards for formatting information
      • Reviewing
      • Politics editorial board
      • Ethics of journal publications


      • For advertisers
      • Subscription
      • About the Publishing House
      • Contact us
  •  Mechanisms of coagulopathy in COVID-19

    Редактор | 2022, Practical medicine part 20 №7. 2022 | 20 ноября, 2022

    KH.S. KHAERTYNOV, V.A. ANOKHIN, S.V. KHALIULLINA, E.A. SALAKHOVA

     1Kazan State Medical University, Kazan

     Contact details:

    Khaertynov Kh.S. — MD, Associate Professor of the Department of Childhood Infections

    Address: 49 Butlerov St., Kazan, Russian Federation, 420012, tel.: +7-903-342-96-27, e-mail: khalit65@yandex.ru

    Coronavirus infection COVID-19 is associated with coagulopathy and thrombosis. The mechanisms of coagulopathy and thrombosis in COVID-19 are diverse and are due to the interaction of the SARS-COV2 with vascular endothelium and innate immune cells. The main pathological processes leading to thrombosis in severe forms of COVID-19 include the hyperinflammation and dysfunction of the vascular endothelium. Understanding the pathophysiology of COVID-19 associated coagulopathy will allow us to identify additional areas of therapy aimed at preventing thrombosis and improving the prognosis in severe forms of COVID-19.

    Key words: COVID-19, inflammation, endothelial dysfunction, thrombosis.

    REFERENCES

    1. Iba T., Warkentin T.E, Thachil J. et al. Proposal of the Definition for COVID-19-Associated Coagulopathy. J Clin Med, 2021, vol. 10 (2), p. 191. DOI: 10.3390/jcm10020191
    2. Makatsariya A.D., Slukhanchuk E.V., Bitsadze V.O. et al. COVID-19, hemostasis disorders and the risk of thrombotic complications. Vestnik RAMN, 2020, vol. 57, no. 4, pp. 306–317 (in Russ.).
    3. Khismatullin R.R., Ivaeva R.A., Abdullaeva Sh. et al. Pathological manifestations of inflammatory microthrombosis in COVID-19. Kaz. med. zhurnal, 2022, vol. 103, no. 4, pp. 575–587 (in Russ.).
    4. Burn E., Duarte-Salles T., Fernandez-Bertolin S. et al. Venous or arterial thrombosis and deaths among COVID-19 cases: a European network cohort study. Lancet Infect Dis, 2022, vol. 22, pp. 1142–1152.
    5. Ackermann M., Verleden S.E., Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med, 2020, vol. 383 (2), pp. 120–128.
    6. Menter T., Haslbauer J.D., Nienhold R. et al. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology, 2020, vol. 77 (2), pp. 198–209.
    7. Menter T., Haslbauer J.D., Nienhold R. et al. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology, 2020, vol. 77 (2), pp. 198–209.
    8. Wichmann D., Sperhake J.P., Lutgehetmann M. et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med, 2020, vol. 173 (4), pp. 268–277.
    9. Rey J.R., Caro-Codón J., Pineda D.P. et al. Arterial thrombotic complications in hospitalized patients with COVID-19. Revista Espanola de Cardiologia (English ed.), 2020, vol. 73 (9), p. 769. doi: 10.1016/j.rec.2020.05.008
    10. Lobastov K.V., Schastlivtsev I.V., Porembskaya O.Ya., Dzhenina O.V., Bargandzhiya A.B., Tsaplin S.N. COVID-19-associated coagulopathy: a review of current recommendations for diagnosis, treatment and prevention. Ambulatornaya khirurgiya, 2020, no. 3–4, pp. 36–51 (in Russ.). DOI: 10.21518/1995-1477-2020-3-4-36-51
    11. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost, 2020, vol. 18 (4), pp. 844–847. DOI: 10.1111/jth.14768
    12. Jiang L., Li Y., Du H. et al. Effect of Anticoagulant Administration on the Mortality of Hospitalized Patients With COVID-19: An Updated Systematic Review and Meta-Analysis. Front. Med., 2021, vol. 8, p. 698935. DOI: 10.3389/fmed.2021.698935
    13. Vlasov T.D., Yashin S.M. Arterial and venous thromboses. Is Virchow’s triad always applicable? Regionarnoe krovoobrashchenie i mikrotsirkulyatsiya, 2022, vol. 21, no. 1, pp. 78–86 (in Russ.).
    14. Conway E.M., Mackman N., Warren R.O., Wolberg A.S., Mosnier L.O., Campbell R.A. et al. Undestanding COVID-19 associated coagulopathy. Nat Rev Immunol, 2022, vol. 22 (10), pp. 639-649. doi: 10.1038/s41577-022-00762-9.
    15. Merad M., Martin J.C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol, 2020, vol. 20 (6), pp. 355–362.
    16. Castelli V., Cimini A., Ferri C. Cytokine Storm in COVID-19: «When You Come Out of the Storm, You Won’t Be the Same Person Who Walked in». Front. Immunol, 2020, vol. 11, p. 2132. DOI: 10.3389/fimmu.2020.02132
    17. Fajgenbaum D.C., June C.H. Cytokine Storm. N Engl J Med, 2020, vol. 383, pp. 2255–2273. DOI: 10.1056/NEJMra2026131
    18. Rawson T.M., Moore L.S.P., Zhu N. et al. Bacterial and Fungal Coinfection in Individuals With Coronavirus: A Rapid Review To Support COVID-19 Antimicrobial Prescribing. Clin Infect Dis, 2020, vol. 71 (9), pp. 2459–2468. DOI: 10.1093/cid/ciaa530
    19. Karawajczyk M., Douhan Håkansson L., Lipcsey M., Hultström M., Pauksens K., Frithiof R., Larsson A. High expression of neutrophil and monocyte CD64 with simultaneous lack of upregulation of adhesion receptors CD11b, CD162, CD15, CD65 on neutrophils in severe COVID-19. Therapeutic Advances in Infectious Disease, 2021, vol. 8, pp. 1–13. DOI: 10.1177/20499361211034065
    20. Zuo Y., Yalavarthi S., Shi H. et al. Neutrophil extracellular traps in COVID-19. JCI Insight, 2020, vol. 5 (11), p. e138999. DOI: 10.1172/jci.insight.138999
    21. Brinkmann V., Reichard U., Goosmann C. et al. Neutrophil extracellular traps kill bacteria. Science, 2004, vol. 303, pp. 1532–1535.
    22. Barnes B.J., Adrover J.M., Baxter-Stoltzfus A. et al. Journal of Experimental Medicine, 2020, vol. 217 (6), p. e20200652.
    23. Middleton E. A., He X.-Y., Denorme F. et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood, 2020, vol. 136 (10), pp. 1169–1179. DOI: 10.1182/blood.2020007008
    24. Cedervall J., Zhang Y., Huang H. et al. Neutrophil Extracellular Traps Accumulate in Peripheral Blood Vessels and Compromise Organ Function in Tumor-Bearing Animals. Cancer Res, 2015, vol. 75, pp. 2653–2662.
    25. Fuchs T.A., Brill A., Duerschmied D. et al. Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. USA, 2010, vol. 107, pp. 15880–15885.
    26. Laridan E., Martinod K., De Meyer S.F. Neutrophil Extracellular Traps in Arterial and Venous Thrombosis. Semin. Thromb. Hemost, 2019, vol. 45, pp. 86–93.
    27. Martinod K., Wagner D.D. Thrombosis: tangled up in NETs. Blood, 2014, vol. 123, pp. 2768–2776.
    28. Jimenez-Alcazar M., Rangaswamy C., Panda R. et al. Host DNases ´prevent vascular occlusion by neutrophil extracellular traps. Science, 2017, vol. 358, pp 1202–1206.
    29. Bonaventura A. et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol, 2021, vol. 21 (5), pp. 319–329. DOI: 10.1038/s41577-021-00536-9
    30. Brill A., Fuchs T.A., Savchenko A.S. et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost, 2012, vol. 10 (1), pp. 136–144. DOI: 10.1111/j.1538-7836.2011.04544.x
    31. Maksimenko A.V., Turashev A.D. Functions and state of the endothelial glycocalyx in normal and pathological conditions. Ateroskleroz i dislipidemii, 2011, no. 2, pp. 4–17 (in Russ.).
    32. Pons S., Fodil S., Azoulay E. et al. The vascular endothelium: The cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Crit. Care, 2020, vol. 24, p. 353.
    33. Deng H., Tang T.X., Deng C. et al. Endothelial Dysfunction and SARS-CoV-2 Infection: Association and Therapeutic Strategies. Pathogens, 2021, vol. 10 (5), p. 582. DOI: 10.3390/pathogens10050582
    34. Zubairova L.D., Mustafin I.G., Nabiullina R.M. Pathogenetic approaches to the study of markers of venous thrombosis. Kaz. med. zhurnal, 2013, vol. 94, no. 5, pp. 685–691 (in Russ.).
    35. Purcell S.C., Godula K. Synthetic glycoscapes: addressing the structural and functional complexity of the glycocalyx. Interface Focus, 2019, vol. 9 (2). DOI: 10.1098/rsfs.2018.0080
    36. Vaduganathan M., Vardeny O., Michel T. et al. Renin-angiotensin-aldosterone system inhibitors in patients with covid-19. N Engl J Med, 2020, vol. 382, pp. 1653–1659. DOI: 10.1056/NEJMsr2005760
    37. Lang J., Yang N., Deng J. et al. Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans. PLoS ONE, 2011, vol. 6, pp. e23710. DOI: 10.1371/journal.pone.0023710
    38. Iba T., Levy J. H. Derangement of the endothelial glycocalyx in sepsis. J. Thromb. Haemost, 2019, vol. 17, pp. 283–294. doi: 10.1111/jth.14371
    39. Nikmanesh M., Cancel L.M., Shi Z. D. et al. Heparan sulfate proteoglycan, integrin, and syndecan-4 are mechanosensors mediating cyclic strain-modulated endothelial gene expression in mouse embryonic stem cellderived endothelial cells. Biotechnol. Bioeng, 2019, vol. 116, pp. 2730–2741. DOI: 10.1002/bit. 27104
    40. van den Berg B.M., Vink H., Spaan J.A. The endothelial glycocalyx protects against myocardial edema. Circ Res, 2003, vol. 92, pp. 592–594. DOI: 10.1161/01.RES.0000065917.53950.75
    41. Wadowski P.P., Kautzky-Willer A., Gremmel T. et al. Sublingual microvasculature in diabetic patients. Microvasc Res, 2020, vol. 129, p. 103971. DOI: 10.1016/j.mvr.2019.103971
    42. Salmon A.H., Satchell S.C. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability. J Pathol, 2012, vol. 226, pp. 562–574. DOI: 10.1002/path.3964
    43. Beurskens D.M.H., Bol M.E., Delhaas T. et al. Decreased endothelial glycocalyx thickness is an early predictor of mortality in sepsis. Anaesthesia and Intensive Care, 2020, vol. 48 (3), pp. 221–228. DOI: 10.1177/0310057X20916471
    44. Schmidt E.P., Overdier K.H., Sun X. et al. Urinary glycosaminoglycans predict outcomes in septic shock and acute respiratory distress syndrome. Am J Respir Crit Care Med, 2016, vol. 194, pp. 439–449. DOI: 10.1164/rccm.201511-2281OC
    45. Jin Y., Ji W., Yang H. et al. Endothelial activation and dysfunction in COVID-19: From basic mechanisms to potential therapeutic approaches. Signal. Transduct. Target. Ther, 2020, vol. 5, p. 293. DOI: 10.1038/s41392-020-00454-7
    46. Kondashevskaya M.V. Modern ideas about the role of heparin in hemostasis and regulation of enzymatic and hormonal activity. Vestn. RAMN, 2010, no. 7, pp. 35–43 (in Russ.).
    47. Escher R., Breakey N., Lammle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res, 2020, vol. 190, p. 62. DOI: 10.1016/j.thromres.2020.04.014
    48. Bernard I., Limonta D., Mahal L.K. et al. Endothelium Infection and Dysregulation by SARS-CoV-2: Evidence and Caveats in COVID-19. Viruses, 2020, vol. 13, p. 29. DOI: 10.3390/v13010029
    49. Streetley J., Fonseca A.V., Turner J. et al. Stimulated release of intraluminal vesicles from Weibel-Palade bodies. Blood, 2019, vol. 133, pp. 2707–2717. DOI: 10.1182/blood-2018-09-874552
    50. Libby P., Lusche, T. COVID-19 is, in the end, an endothelial disease. Eur. Heart J, 2020, vol. 41, pp. 3038–3044. DOI: 10.1093/eurheartj/ehaa623
    51. Zheng X.L. ADAMTS13 and von willebrand factor in thrombotic thrombocytopenic purpura. Annual Review of Medicine, 2015, vol. 66, pp. 211–225. DOI: 10.1146/annurev-med-061813-013241
    52. Fujikawa K., Suzuki H., McMullen B., Chung D. Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family. Blood, 2001, vol. 98 (6), pp. 1662–1666. DOI: 10.1182/blood.V98.6.1662
    53. Doevelaar A.A.N., Bachmann M., Hölzer B., Seibert F.S., Rohn B.J., Bauer F., Witzke O., Dittmer U., Bachmann M., Yilmaz S., Dittmer R., Schneppenheim S., Babel N., Budde U., Westhoff T.H. Von Willebrand Factor Multimer Formation Contributes to Immunothrombosis in Coronavirus Disease 2019. Critical Care Medicine, 2021, vol. 49 (5), pp. e512–e520. DOI: 10.1097/CCM.0000000000004918
    54. Hafez W., Ziade M.A., Arya A. et al. Reduced ADAMTS13 Activity in Correlation with Pathophysiology, Severity, and Outcome of COVID-19: A Retrospective Observational Study. Int J Infect Dis, 2022, vol. 117, pp. 334–344. DOI: 10.1016/j.ijid.2022.02.019
    55. Fard M.B., Fard S.B., Ramazi S. Thrombosis in COVID-19 infection: Role of platelet activation-mediated immunity. Thrombosis Journal, 2021, vol. 19, p[. 59.
    56. Caillon A., Trimaille A., Favre J. et al. Role of neutrophils, platelets, and extracellular vesicles and their interactions in COVID-19-associated thrombopathy. J. Thromb. Haemost, 2022, vol. 20, pp. 17–31. DOI: 10.1111/jth.15566
    57. Althaus K., Marini I., Zlamal J. et al. Antibody-induced procoagulant platelets in severe COVID-19 infection. Blood, 2021, vol. 137, pp. 1061–1071. DOI: 10.1182/blood.2020008762
    58. Zaid Y., Puhm F., Allaeys I. et al. Platelets can associate with SARS-Cov-2 RNA and are hyperactivated in COVID-19. Circ. Res, 2020, vol. 127 (11), pp. 1404–1418. DOI: 10.1161/CIRCRESAHA.120.317703
    59. Mayadas T.N., Johnson R.C., Rayburn H. et al. Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice. Cell, 1993, vol. 74 (3), pp. 541–554. Doi: 10.1016/0092-8674(93)80055-J

    Метки: 2022, COVID-19, E.A. SALAKHOVA, endothelial dysfunction, inflammation, Kh.S. KHAERTYNOV, Practical medicine part 20 №7. 2022, S.V. Khaliullina, thrombosis, V.A. Anokhin

    ‹ Application of stromal vascular fraction cells from adipose tissue in the surgery of brachial plexus injuries Severe bacterial pneumonia disguised as a systemic lupus erythematosus exacerbation ›
    • rus Версия на русском языке


      usa English version site


      Find loupe

      

    • PARTNERS

      пов  logonew
    «Для
    Practical medicine. Scientific and practical reviewed medical journal
    All rights reserved ©