pm mfvt1
    • Main page
      • About journal
      • Articles. Working with contents
      • Editor-in-chief
      • Editorial Council
      • Editorial Board


      • For authors
      • Standards for formatting information
      • Reviewing
      • Politics editorial board
      • Ethics of journal publications


      • For advertisers
      • Subscription
      • About the Publishing House
      • Contact us
  • Long-term neurological consequences of cytomegalovirus infection in the early neonatal period (literature review)

    Редактор | 2022, Practical medicine part 20 №7. 2022 | 20 ноября, 2022

    O.V. BORISOVA, V.A. VYALTSEVA, A.A. FRANC

    Samara State Medical University, Samara

     Contact details:

    Borisova O.V. — MD, Professor, Head of the Department of Children’s Infections

    Address: 89 Chapaevskaya St., Samara, Russian Federation, 443099, tel.: +7 (846) 374-10-04 (4696), e-mail: o.v.borisova@samsmu.ru

    Cytomegalovirus infection (CMVI) is widespread throughout the world — 60–90% of adults are infected as a result of a long-term latent infection. The risk of CMVI transmission to a child in the primary infection of a pregnant woman is 30–40%, in the chronic form — 0.2–1.8%. Cytomegalovirus is neurotropic and can penetrate the central nervous system at any stage of its development and maturity. In both overt and asymptomatic forms of CMVI, children can experience long-term neurological consequences, ranging from hearing loss, minimal brain dysfunction to profound mental retardation.

    The article considers long-term neurological consequences of congenital and postnatal cytomegalovirus infection. Modern ideas about the mechanisms of damage to the nervous system in CMVI are presented. The factors of adverse outcomes after the disease are described. Long-term neurological consequences in children are presented: sensorineural deafness and ophthalmic complications, neurocognitive disorders, cerebral palsy, autism spectrum disorders, and others.

    The necessity of follow-up monitoring of children infected with cytomegalovirus with individualized approach to each patient is substantiated. The article will help practical pediatricians to expand their knowledge about CMVI and avoid possible negative consequences for patients in the future.

    Key words: cytomegalovirus infection, children, neurological long-term consequences.

    REFERENCES

    1. Rossiyskaya assotsiatsiya spetsialistov perinatal’noy meditsiny. Rossiyskoe obshchestvo neonatologov. Rossiyskoe obshchestvo akusherov-ginekologov. Klinicheskie rekomendatsii (proekt) «Vrozhdennaya tsitomegalovirusnaya infektsiya» [Russian Association of Perinatal Medicine Specialists. Russian Society of Neonatologists. Russian Society of Obstetricians and Gynecologists. Clinical guidelines (draft) «Congenital cytomegalovirus infection»], 2019. 49 p., available at: http://www.raspm.ru/files/CMVI1.pdf
    2. Kalser J., Adler B., Mach M. et al. Differences in growth properties among two human cytomegalovirus glycoprotein O genotypes. Front. Microbiol, 2017, vol. 8, p. 1609. doi: 10.3389/fmicb.2017.01609
    3. Mussi-Pinhata M.M., Yamamoto A.Y., Aragon D.C. et al. Seroconversion for Cytomegalovirus Infection during Pregnancy and Fetal Infection in a 29 Highly Seropositive Population: «The BraCHS Study». J Infect Dis, 2018, vol. 218, r. 1200.
    4. Chuang Chuang Á., Ramos Hernández H., Zelada Bacigualupo Ú. et al. Cribado de infección por cytomegalovirus congénito en recién nacidos de alto riesgo [Congenital cytomegalovirus infection screening in high risk newborn]. Rev Chilena Infectol, 2021, vol. 38 (1), rr. 45–53. Spanish. doi: 10.4067/S0716-10182021000100045
    5. Davis N.L., King C.C., Kourtis A.P. Cytomegalovirus infection in pregnancy. Birth Defects Res, 2017, vol. 109 (5), rr. 336–464.
    6. Emery V.C., Lazzarotto T. Cytomegalovirus in pregnancy and the neonate [version 1; referees: 2 approved] F1000. Research, 2017, vol. 6 (F1000 Faculty Rev), r. 138. doi: 10.12688/f1000research.10276.1
    7. Britt W. Controversies in the natural history of congenital human cytomegalovirus infection: The paradox of infection and disease in offspring of women with immunity prior to pregnancy. Med. Microbiol Immunol, 2015, vol. 204, rr. 263–271. doi: 10.1007/s00430-015-0399-9
    8. Britt W.J. Maternal immunity and the natural history of congenital human cytomegalovirus infection. Viruses, 2018, vol. 10. DOI: 8.10.3390/v10080405
    9. Korndewal M.J., Oudesluys-Murphy A.M., Kroes A.C.M. et al. Long-term impairment attributable to congenital cytomegalovirus infection: a retrospective cohort study. Dev Med Child Neurol, 2017, vol. 59, rr. 1261–1268. https://onlinelibrary.wiley.com/doi/10.1111/dmcn.13556
    10. Diener M.L., Zick C.D., McVicar S.B. et al. Outcomes from a hearing-targeted cytomegalovirus-screening program. Pediatrics, 2017, vol. 139, pp. e20160789. doi: 10.1542/peds.2016-0789
    11. Fowler K.B., Boppana S.B. Congenital cytomegalovirus infection. Semin Perinatol, 2018, Apr, vol. 42 (3), rr. 149–154. doi: 10.1053/j.semperi.2018.02.002
    12. Naing Z.W., Scott G.M., Shand A. et al. Congenital cytomegalovirus infection in pregnancy: a review of prevalence, clinical features, diagnosis and prevention. The Australian & New Zealand Journal of Obstetrics & Gynecology, 2016, vol. 56 (1), rr. 9–18. doi: 10.1111/ajo.12408
    13. Ronchi A., Shimamura M., Malhotra P.S. et al. Encouraging postnatal cytomegalovirus (CMV) screening: the time is NOW for universal screening!. Expert Rev Anti Infect Ther, 2017, vol. 15 (5), rr. 417–419. doi:10.1080/14787210.2017.1303377
    14. Hilditch C., Liersch B., Spurrier N. et al. Does screening for congenital cytomegalovirus at birth improve longer-term hearing outcomes? Arch Dis Child, 2018, vol. 103 (10), rr. 988–992, doi: 10.1136/archdischild-2017-314404
    15. Balcells C., Botet F., Gayete S. et al. Castrillo Study Group. Vertically transmitted cytomegalovirus infection in newborn preterm infants. J Perinat Med, 2016, Jul 1, vol. 44 (5), rr. 485–490.
    16. Grosse S.D., Dollard S.C., Kimberlin D.W. Screening for congenital cytomegalovirus after newborn hearing screening: What comes next? Pediatrics, 2017, vol. 139 (2), p. e20163837. doi:10.1542/peds.2016-3837
    17. Brinkmann M.M., Dag F., Hengel H. et al. Cytomegalovirus immune evasion of myeloid lineage cells. Med. Microbiol. Immunol, 2015, vol. 204, rr. 367–382. doi: 10.1007/s00430-015-0403-4
    18. Gabor F., Jahn G., Sedmak D.D. et al. In vivo Downregulation of MHC Class I Molecules by HCMV Occurs during All Phases of Viral Replication but Is Not Always Complete. Front. Cell. Infect. Microbiol, 2020, vol. 10, rr. 283. doi: 10.3389/fcimb.2020.00283
    19. Tanimura K., Uchida A., Imafuku H. et al. The Current Challenges in Developing Biological and Clinical Predictors of Congenital Cytomegalovirus Infection. Int J Mol Sci,2021, vol. 22 (24), r. 13487. Published 2021 Dec 15. Doi: 10.3390/ijms222413487
    20. Juno J.A., van Bockel D., Kent S.J. et al. Cytotoxic CD4 T Cells-Friend or Foe during Viral Infection? Front. Immunol, 2017, vol. 8, r. 19. doi: 10.3389/fimmu.2017.00019
    21. Lei J., Xie L., Zhao H. et al. Maternal CD 8+ T-cell depletion alleviates intrauterine inflammation-induced perinatal brain injury. Am. J. Reprod. Immunol, 2018, vol. 79, p. e12798. doi: 10.1111/aji.12798
    22. Messinger C.J., Lipsitch M., Bateman B.T. et al. Association Between Congenital Cytomegalovirus and the Prevalence at Birth of Microcephaly in the United States. JAMA Pediatr, 2020, vol. 174 (12), rr. 1159–1167. doi: 10.1001/jamapediatrics.2020.3009
    23. Pass R.F., Arav-Boger R. Maternal and fetal cytomegalovirus infection: diagnosis, management, and prevention. F1000Res, 2018, vol. 7, r. 255. doi: 10.12688/f1000research
    24. Luck S.E., Wieringa J.W., Blázquez-Gamero D., et al. Congenital cytomegalovirus — a European expert consensus statement on diagnosis and management. Pediatr Infect Dis J, 2017, vol. 36, rr. 1205–213. DOI: 10.1097/INF.0000000000001763
    25. Takemoto K., Oshiro M., Sato Y. et al. Outcomes in symptomatic preterm infants with postnatal cytomegalovirus infection. Nagoya J Med Sci, 2021, vol. 83 (2), rr. 311–319. doi:10.18999/nagjms.83.2.311
    26. Anne-Aurélie L., Souad B., Leila K. Clinical Findings and Autopsy of a Preterm Infant with Breast Milk-Acquired Cytomegalovirus Infection. AJP Rep, 2016, vol. 6 (2), pp. e198-e202. Doi: 10.1055/s-0035-1566249v
    27. Rawlinson W.D., Boppana S.B., Fowler K.B. et al. Congenital cytomegalovirus infection in pregnancy and the neonate: consensus recommendations for prevention, diagnosis, and therapy. Lancet Infect Dis, 2017, doi: org/10.1016/S1473-3099 (17)30143-3
    28. Vetrova N.S., Savvateeva V.G. Long term consequences of symptomatic cytomegalovirus infection in the first months of life. Pediatrics named after G.N. Speransky, 2016, vol. 95 (2).
    29. Imafuku H., Yamada H., Uchida A. et al. Clinical and ultrasound features associated with congenital cytomegalovirus infection as potential predictors for targeted newborn screening in high-risk pregnancies. Sci. Rep, 2020, vol. 10, r. 19706. doi: 10.1038/s41598-020-76772-1
    30. Cofre F., Delpiano L., Labraña Y. et al. Síndrome de TORCH: enfoqueracional del diagnóstico y tratamientopre y post-natal. Recomendaciones Del Comité Consultivo de Infecciones Neonatales Sociedad Chilena de Infectología. 2016. Rev Chil infectología, 2016, vol. 33 (2), rr. 191–216. Doi: 10.4067/s0716-10182016000200010
    31. Leyder M., Vorsselmans A., Done E. et al. Primary maternal cytomegalovirus infections: accuracy of fetal ultrasound for predicting sequelae in offspring. Am J Obstet Gynecol, 2016, vol. 215 (5), rr. 638.e1–638.e8. doi: 10.1016/j.ajog.2016.06.003
    32. Faure-Bardon V., Magny J.F., Parodi M. et al. Sequelae of congenital cytomegalovirus following maternal primary infections are limited to those acquired in the first trimester of pregnancy. Clin Infect Dis, 2019, vol. 69 (9), rr. 1526–1532. doi: 10.1093/cid/ciy1128
    33. Sanchez T.R., Datlow M.D., Nidecker A.E. Diffuse periventricular calcification and brain atrophy: a case of neonatal central nervous system cytomegalovirus infection. Neuroradiol J,2016, vol. 29, rr. 314–316. doi: 10.1177/1971400916665372
    34. Yamamoto A.Y., Anastasio A.R.T., Massuda E.T. et al. Contribution of congenital cytomegalovirus infection to permanent hearing loss in a highly seropositive population: the Brazilian Cytomegalovirus Hearing and Maternal Secondary Infection Study. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 2020, vol. 70 (7), rr. 1379–1384. doi: 10.1093/cid/ciz413
    35. Liu P.H., Hao J.D., Li W.Y. et al. Congenital cytomegalovirus infection and the risk of hearing loss in childhood: A PRISMA-compliant meta-analysis. Medicine (Baltimore), 2021, vol. 100 (36), p. e27057. doi: 10.1097/MD.0000000000027057
    36. Bartlett A.W., McMullan B., Rawlinson W.D. et al. Hearing and neurodevelopmental outcomes for children with asymptomatic congenital cytomegalovirus infection: a systematic review. Rev. Med. Virol, 2017.
    37. Carraro M., Almishaal A., Hillas E. et al. Cytomegalovirus (CMV) infection causes degeneration of cochlear vasculature and hearing loss in a mouse model. Journal of the Association for Research in Otolaryngology: JARO, 2017, vol. 18 (2), rr. 263–273. doi: 10.1007/s10162-016-0606-4
    38. Salomè Serena. The Natural History of Hearing Disorders in Asymptomatic Congenital Cytomegalovirus Infection. Frontiers in pediatrics, 2020, vol. 8, r. 217. doi: 10.3389/fped.2020.00217
    39. Puhakka L., Lappalainen M., Lonnqvist T. et al. The burden of congenital cytomegalovirus infection: a prospective cohort study of 20 000 infants in Finland. J. Pediatric Infect. Dis. Soc, 2018.
    40. Uchida A., Tanimura K., Morizane M. et al. Clinical Factors Associated with Congenital Cytomegalovirus Infection: A Cohort Study of Pregnant Women and Newborns. Clin. Infect. Dis, 2020, vol. 71, rr. 2833–2839. doi: 10.1093/cid/ciz1156
    41. Laura Puhakka, Maija Lappalainen, Tuula Lönnqvist et al. Hearing outcome in congenitally CMV infected children in Finland — Results from follow-up after three years age. International Journal of Pediatric Otorhinolaryngology, 2022, vol. 156, pp. 111099. ISSN 0165-5876.
    42. Lanzieri T.M., Chung W., Flores M., et al. Hearing loss in children with asymptomatic congenital cytomegalovirus infection. Pediatrics, 2017, vol. 139 (3), p. e20162610. doi: 10.1542/peds.2016-2610
    43. Wieringen A., Boudewyns A., Sangen A. et al. Unilateral congenital hearing loss in children: challenges and potentials. Hear. Res, 2019, vol. 372, rr. 29–41.
    44. Fitzpatrick E.M., Gaboury I., Durieux-Smith A. et al. Auditory and language outcomes in children with unilateral hearing loss. Hear. Res, 2019, vol. 372, rr. 42–51.
    45. Thomas J.P., Neumann K., Dazert S., Voelter C. Cochlear implantation in children with congenital single-sided deafness. Otol. Neurotol, 2017, vol. 38, rr. 496–503.
    46. Klase Z.A., Khakhina S., Schneider Ade B. et al. Zika fetal neuropathogenesis: etiology of a viral syndrome. PLoS Neglected Tropical Diseases, 2016, vol. 10 (8). doi: 10.1371/journal.pntd.0004877
    47. Shapiro-Mendoza C.K., Rice M.E., Galang R.R. et al. Pregnancy outcomes after maternal Zika virus infection during pregnancy — U.S. territories, January 1, 2016, April 25, 2017. MMWR Morbidity and mortality weekly report, 2017, 2017, vol. 66 (23), rr. 615–621. doi: 10.15585/mmwr.mm6623e1
    48. Zhang X.-Y., Fang F. Congenital human cytomegalovirus infection and neurologic diseases in newborns. Chin. Med. J, 2019, vol. 132, rr. 2109. doi: 10.1097/CM9.0000000000000404
    49. Lazarini F., Katsimpardi L., Levivien S. et al. Congenital cytomegalovirus infection alters olfaction before hearing deterioration in mice. J Neurosci, 2018, vol. 38 (49), rr. 10424–10437. doi: 10.1523/JNEUROSCI.0740-18.2018.
    50. Han D., Byun S.H., Kim J. et al. Human cytomegalovirus IE2 protein disturbs brain development by the dysregulation of neural stem cell maintenance and the polarization of migrating neurons. J Virol, 2017, vol. 91, doi: 10.1128/JVI.00799-17
    51. Escobar Castellanos, S. de la Mata Navazo, M. Carrón Bermejo et al. Association between neuroimaging findings and neurological sequelae in patients with congenital cytomegalovirus infection. Neurología (English Edition), 2022, vol. 37 (2), pp. 122–129, ISSN 2173-5808. DOI: 10.1016/j.nrleng.2018.11.011
    52. Smithers-Sheedy H., Raynes-Greenow C., Badawi N. et al. Congenital cytomegalovirus among children with cerebral palsy. J Pediatr, 2017, vol. 181, rr. 267–271.
    53. Xu H., Zhang L., Xuan X.Y. et al. Intrauterine cytomegalovirus infection: a possible risk for cerebral palsy and related to its clinical features, neuroimaging findings: a retrospective study. BMC Pediatr, 2020, vol. 20 (1), r. 555. Published 2020 Dec 8. Doi: 10.1186/s12887-020-02449-3
    54. Constantino J.N., Marrus N. The Early Origins of Autism. Child Adolesc Psychiatr Clin N Am, 2017, vol. 26 (3), rr. 555–570.
    55. Jones K.L., Croen L.A., Yoshida C.K. et al. Autism with intellectual disability is associated with increased levels of maternal cytokines and chemokines during gestation. Molecular psychiatry, 2017, vol. 22 (2), rr. 273–279.
    56. Slawinski B.L., Talge N., Ingersoll B. et al. Maternal cytomegalovirus sero-positivity and autism symptoms in children. Am J Reprod Immunol, 2018, vol. 79 (5), p. e12840. doi: 10.1111/aji.12840
    57. Lipitz S., Elkan Miller T., Yinon Y. et al. Revisiting short- and long-term outcome after fetal first-trimester primary cytomegalovirus infection in relation to prenatal imaging findings. Ultrasound Obstet Gynecol, 2020, Oct, vol. 56 (4), rr. 572–578. doi: 10.1002/uog.21946 PMID: 31858642.
    58. Turriziani Colonna A., Buonsenso D., Pata D. et al. Long-Term Clinical, Audiological, Visual, Neurocognitive and Behavioral Outcome in Children with Symptomatic and Asymptomatic Congenital Cytomegalovirus Infection Treated with Valganciclovir. Front Med (Lausanne), 2020, vol. 7, r. 268. Published 2020 Jul 24. doi: 10.3389/fmed.2020.00268
    59. Kobas M., Bickle Graz M., Truttmann A.C. et al. Clinical characteristics, audiological and neurodevelopmental outcomes of newborns with congenital cytomegalovirus infection. Swiss Med Wkly, 2018, r. 148.
    60. Osterholm E.A., Schleiss M.R. Impact of breast milk-acquired cytomegalovirus infection in premature infants: Pathogenesis, prevention, and clinical consequences? Rev Med Virol, 2020, vol. 30 (6), rr. 1–11. doi: 10.1002/rmv.2117
    61. Gunkel J., de Vries L.S., Jongmans M. et al. Outcome of preterm infants with postnatal cytomegalovirus infection. Pediatrics, 2018, vol. 141 (2). doi:10.1542/peds.2017-0635
    62. Kono Y., Yonemoto N., Kusuda S. et al. Developmental assessment of VLBW infants at 18 months of age: A comparison study between KSPD and Bayley III. Brain Dev, 2016, vol. 38 (4), rr. 377–385. doi: 10.1016/j.braindev.2015.10.010
    63. Jin H.D., Demmler-Harrison G.J., Coats D.K. et al. Long-term visual and ocular sequelae in patients with congenital cytomegalovirus. Pediatr Infect Dis J., 2017, vol. 36, rr. 877–882.
    64. Ross S.A., Michaels M.G., Ahmed A. et al. Contribution of Breastfeeding to False-Positive Saliva Polymerase Chain Reaction for Newborn Congenital Cytomegalovirus Screening. J Infect Dis, 2018, vol. 217 (10), rr. 1612–1615.

    Метки: 2022, A.A. FRANC, Children, cytomegalovirus infection, neurological long-term consequences, O.V. BORISOVA, Practical medicine part 20 №7. 2022, V.A. VYALTSEVA

    ‹  Tracheostomy in patients with COVID-19 Pharmacoeconomic aspects of the use of anticoagulants in a multi-speciality hospital ›
    • rus Версия на русском языке


      usa English version site


      Find loupe

      

    • PARTNERS

      пов  logonew
    «Для
    Practical medicine. Scientific and practical reviewed medical journal
    All rights reserved ©