pm mfvt1
    • Main page
      • About journal
      • Articles. Working with contents
      • Editor-in-chief
      • Editorial Council
      • Editorial Board


      • For authors
      • Standards for formatting information
      • Reviewing
      • Politics editorial board
      • Ethics of journal publications


      • For advertisers
      • Subscription
      • About the Publishing House
      • Contact us
  •  Formation of intestinal microbiotes and cognitive development

    Редактор | 2020, Lectures for doctors, Practical medicine part 18 №3. 2020 | 1 апреля, 2020

    N.V. RYLOVA1, A.V. ZHOLINSKY2

    1Kazan State Medical University of the Ministry of Health of the Russian Federation, Kazan

    2Federal Scientific and Clinical Center for Sports Medicine and Rehabilitation of the FMBA of Russia, Moscow

    Contact:

    Rylova N.V. — MD, Professor of the Department of Hospital Pediatrics with a course in Polyclinic Pediatrics

    Address: 49 Butlerov Str., 420012, Kazan, Russian Federation, tel. (843) 221-24-28, e-mail: [email protected]

    The complex relationship between gut microbiota and behavior has attracted increasing attention in recent years. Altered cognitive function is considered as a component of many pathological conditions, including metabolic and intestinal diseases. The role of microbiota in modulating these diseases can be of great clinical importance. Studies of the interaction between factors that modulate the intestinal microbiota and their subsequent effect on cognitive function are in the process of accumulating data. Although the exact mechanism underlying the influence of microbiota on cognitive functions remains to be confirmed, modern hypotheses focus on the interaction of the nervous, endocrine and immune factors. Identification of possible neuronal and humoral relationships involved in the regulation of the “microbiota-intestines-brain” axis requires further study.

    Key words: microbiota, intestines, «microbiota-intestines-brain axis», cognitive functions.

    REFERENCES

    1. Ziganshina A.A., Rylova N.V. The balance of the microbiota of the intestines of a child is the key to maintaining health. Pediatriya, 2019, no. 98 (6), pp. 134-139 (in Russ.). DOI: 10.24110/0031-403X-2019-98-6-134-139.
    2. Silveira P.P., Portella A.K., Goldani M.Z., Barbieri M.A. Developmental origins of health and disease (DOHaD). J Pediatr (Rio J), 2007, no. 83, pp. 494-504.
    3. Bischoff S. Gut health: a new objective in medicine? BMC Med, 2011, no. 9, p. 24.
    4. Baganz N.L., Blakely R.D. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS ChemNeurosci., 2013, no. 4, pp. 48-63.
    5. Parfrey L.W., Knight R. Spatial and temporal variability of the human microbiota. ClinMicrobiol Infect, 2012, no. 18, suppl. 4, pp. 8-11.
    6. Wopereis H., Oozeer R., Knipping K., Belzer C., Knol J. The first thousand days – intestinal microbiology of early life: establishing a symbiosis. Pediatr Allergy Immunol, 2014, no. 25, pp. 428-438.
    7. Biktimirova A.A., Rylova N.V. State of carnitine metabolism in young athletes. Prakticheskaya meditsina, 2014, no. 9 (85), pp. 168-170 (in Russ.).
    8. LeBlanc J.G., Milani C., deGiori G.S. et al. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. CurrOpinBiotechnol, 2013, no. 24, pp. 160-168.
    9. Tremaroli V., Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature, 2012, no. 489, pp. 242-249.
    10. Munyaka P., Khafipour E., Ghia J.E. External influence of early childhood establishment of gut microbiota and subsequent health implications. Frontiers in Pediatrics, 2014, no. 2, p. 109.
    11. Matamoros S., Gras-Leguen C., Le Vacon F., Potel G., de La Cochetiere M.F. Development of intestinal microbiota in infants and its impact on health. Trends Microbiol, 2013, no. 21, pp. 167-173.
    12. Guinane C.M., Cotter P.D. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. TherapAdvGastroenterol, 2013, no. 6, pp. 295-308.
    13. Rylova N.V., Zholinskiy A.V., Samoylov A.S. The role of intestinal microbiota in maintaining homeostasis of the body. Sovremennye problemy nauki i obrazovaniya, 2019, no. 6, pp. 204-212 (in Russ.).
    14. Wu G.D., Chen J., Hoffmann et al. Linking long-term dietary patterns with gut microbial enterotypes. Science, no. 2011334(6052), pp. 105-108. DOI: 10.1126/science.1208344
    15. Koenig J.E., Spor A., Scalfone et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. U.S.A, 2011, no. 108 (Suppl. 1), pp. 4578-4585.DOI: 10.1073/pnas.1000081107
    16. Mulle J.G., Sharp W.G., Cubells J.F. The gut microbiome: a new frontier in autism research. Curr. Psychiatry Rep, 2013, no. 15 (2):337. DOI: 10.1007/s11920-012-0337-0
    17. Rogier E.W., Frantz A.L., Bruno et al. Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. Proc. Natl. Acad. Sci. U.S.A, 2014, no. 111 (8), pp. 3074-3079.DOI.ORG/10.1073/PNAS.1315792111
    18. Allsop S.A., Vander Weele C.M., Wichmann R. et al.Optogenetic insights on the relationship between anxiety-related behaviors and social deficits. Front Behav. Neurosci, 2014, no. 16 (8), P. 241 DOI: 10.3389/fnbeh.2014.00241.
    19. Chukoskie L., Townsend J., Westerfield M. Motor skill in autism spectrum disorders: a subcortical view. Int. Rev. Neurobiol, 2013, no. 113, pp. 207-249.
    20. Tomova A., Husarova V., Lakatosova D. Gastrointestinal microbiota in children with autism in Slovakia. Physiol. Behav, 2015, no. 138, pp. 179-187. DOI: 10.1016/j.physbeh.2014.10.033
    21. Pyndt Jorgensen B., Hansen J.T., Krych L. et al. A possible link between food and mood: dietary impact on gut microbiota and behavior in BALB/c mice, 2014, no. 9 (8):e103398. DOI: 10.1371/journal.pone.0103398
    22. Khan N.A., Raine L.B., Donovan et al. The cognitive implications of obesity and nutrition in childhood. Monogr. Soc. Res. Child Dev, 2014, no. 79 (4), pp. 51-71. DOI: 10.1111/mono.12130.
    23. Bruce-Keller A.J., Salbaum J.M., Luo et al. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol. Psychiatry, 2014, no. 77 (7), pp. 607-615. DOI: 10.1016/j.biopsych.2014.07.012
    24. Dash S., Clarke G., Berk M., Jacka F.N. The gut microbiome and diet in psychiatry: focus on depression. Curr. Opin. Psychiatry, 2015, no. 28 (1), pp. 1-6. DOI: 10.1097/YCO.0000000000000117
    25. Lai J.S., Hiles S., Bisquera A. et al. A systematic review and meta-analysis of dietary patterns and depression in community-dwelling adults. Am. J. Clin. Nutr, 2014, no. 99 (1). pp. 181-197. DOI: 10.3945/ajcn.113.069880
    26. Alcock J., Maley C.C., Aktipis C.A. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays, 2014, no. 36 (10), pp. 940-949. DOI: 10.1002/bies.201400071
    27. Kaczmarczyk M.M., Miller M.J., Freund G.G. The health benefits of dietary fiber: beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism, 2012, no. 61 (8), pp. 1058-1066. DOI: 10.1016/j.metabol.2012.01.017
    28. Clarke G., Grenham S., Scully et al.The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry, 2013, no. 18, pp. 666-673.
    29. O’Mahony S.M., Clarke G., Borre et al. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res, 2015, no. 277, P. 32-48. DOI: 10.1016/j.bbr.2014.07.027
    30. Grigoleit J.S., Kullmann J.S., Wolf O.T. et al. Dose-dependent effects of endotoxin on neurobehavioral functions in humans. PLoS One, 2011, no. 6 (12):e28330. DOI: 10.1371/journal.pone.0028330
    31. Lawson M.A., Parrott J.M., McCusker R.H. et al. Intracerebroventricular administration of lipopolysaccharide induces indoleamine 2,3-dioxygenase-dependent depression-like behaviors. J. Neuroinflammation, 2013, no. 10, p. 87. DOI: 10.1186/1742-2094-10-87
    32. Maes M., Kubera M., Leunis J.C. The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuro. Endocrinol, 2008, no. 29 (1), pp. 117-124.
    33. Savignac H.M., Corona G., Mills H. et al. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-daspartate receptor subunits and d-serine. Neurochem. Int, 2013, no.63 (8), pp. 756-764. DOI: 10.1016/j.neuint.2013.10.006
    34. Schmidt K., Cowen P.J., Harmer C.J. et al.Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology (Berl), 2014, no. 232 (10), pp. 1793-1801. DOI: 10.1007/s00213-014-3810-0
    35. Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology, 2012, no. 22 (9), 1147-1162. DOI: 10.1093/glycob/cws074
    36. Sela D.A., Garrido D., Lerno L. et al.Bifidobacteriumlongum subsp. infantis ATCC 15697 alpha-fucosidases are active on fucosylated human milk oligosaccharides. Appl. Environ. Microbiol, 2012, no. 78, pp. 795-803.

    Метки: 2020, A.V. ZHOLINSKY, cognitive functions, intestines, microbiota, N.V. RYLOVA, Practical medicine part 18 №3. 2020, «microbiota-intestines-brain axis»

    ‹ Role of microbiome in modulating post-vaccine immune response Role of intestinal microbiota in cardiovascular diseases ›
    • rus Версия на русском языке


      usa English version site


      Findloupe

      

    • PARTNERS

      пов  logonew
    «Для
    Practical medicine. Scientific and practical reviewed medical journal
    All rights reserved ©