Evaluating lytic activity of bacteriophages against Klebsiella pneumoniae isolated from children with pneumococcal carriage
L.T. BAYAZITOVA1, 2, O.F. TYUPKINA1, T.A. CHAZOVA1, M.S. RODIONIOVA1, R.I. ANAMOV2, O.I. POPTSOV2, I.R. VALIULLINA3, Z.Z. NASYBULLOVA3
1Kazan Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor, Kazan
2Kazan State Medical University, Kazan
3Republic Clinical Hospital, Kazan
Contact details:
Bayazitova L.T. — PhD (medicine), leading researcher, Head of Microbiology Research Laboratory, Associate Professor of Microbiology Department named after Academician V.M. Aristovskiy
Address: 67 Bolshaya Krasnaya St., Kazan, Russian Federation, 420015, tel.: +7 (843) 236-67-91, e-mail: bajalt@mail.ru
Streptococcus pneumoniae and Klebsiella pneumoniae are opportunistic pathogens, commensals; at the same time, they can cause life-threatening infections. These bacteria have a plastic genome and can evade the host’s immune response. Antibiotic-resistant strains are of particular concern. The use of bacteriophages is considered as an alternative or adjunct to antimicrobial therapy. Sensitivity to antimicrobial drugs and to bacteriophages of 70 strains of Klebsiella pneumonia was studied, which were isolated from Streptococcus pneumoniae carriers who applied for diagnostic research in consultation and diagnostic polyclinic of Kazan Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor. Based on the results of phagolysability of K. pneumoniae isolates with different sensitivity profiles to antimicrobial drugs, phage preparations were ranked in the following sequence (as activity decreases): Klebsiella bacteriophage polyvalent purified > Pyobacteriophage complex > sextaphage.
Key words: carriage, Streptococcus pneumoniae, Klebsiella pneumoniae, antibiotic resistance, bacteriophages.
REFERENCES
- Simell B., Auranen K., Käyhty H., Goldblatt D., Dagan R., O’Brien K.L. The fundamental link between pneumococcal carriage and disease. Expert Rev Vaccines, 2012, vol. 11 (7), pp. 841–855.
- Pilishvili T., Lexau C., Farley M.M., Hadler J. et al. Sustained reductions in invasive pneumococcal disease in the era of conjugate vaccine. J Infect Dis, 2010, vol. 201, pp. 32–34. DOI: 10.1086/648593
- Martin R.M., Bachman M.A. Colonization, Infection, and the Accessory Genome of Klebsiella pneumonia. Microb. Pathog, 2018, vol. 22 (8), p. 4. DOI: 10.3389/fcimb.2018.00004
- Yang F., Deng B., Liao W., Wang P., Chen P., Wei J. High rate of multiresistant Klebsiella pneumoniae from human and animal origin. Infect Drug Resist, 2019, vol. 12, pp. 2729–2737. DOI: 10.2147/IDR.S219155
- Paczosa M.K., Mecsas J. Klebsiella pneumoniae: Going on the Offense with a Strong Defense. MMBR, 2016, vol. 80 (3), pp. 629–661. DOI: 10.1128/MMBR.00078-15
- Shantelle Claassen-Weitz, Katherine Y. L. Lim, Christopher Mullally, Heather J. Zar, Mark P Nicol. The association between bacteria colonizing the upper respiratory tract and lower respiratory tract infection in young children: a systematic review and meta-analysis. Clin Microbiol Infect, 2021, vol. 27 (9), pp. 1262–1270. DOI: 10.1016/j.cmi.2021.05.034
- Yang X., Dong N., Chan E.W., Zhang R., Chen S. Carbapenem Resistance-Encoding and Virulence-Encoding Conjugative Plasmids in Klebsiella pneumonia. Trends Microbiol, 2021, vol. 29 (1), pp. 65–83. DOI: 10.1016/j.tim.2020.04.012
- Farhadi M., Ahanjan M., Goli H.R., Haghshenas M. R., Gholami M. High frequency of multidrug-resistant (MDR) Klebsiella pneumoniae harboring several β-lactamase and integron genes collected from several hospitals in the north of Iran. Ann Clin Microbiol Antimicrob, 2021, vol. 20 (1), p. 70. DOI: 10.1186/s12941-021-00476-1
- Rebekah M. Martin, Michael A. Bachman. Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. Front. Cell. Infect. Microbiol, 2018, vol. 8. DOI: 10.3389/fcimb.2018.00004
- Lery L.M, Tomas A., Passet V., Almeida A.S, Bialek-Davenet S., Barbe V., Bengoechea J.A, Sansonetti P., Brisse S., Tournebize R. Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor. BMC Biol, 2014, vol. 12, p. 41. DOI: 10.1186/1741-7007-12-41
- Bengoechea J.A, Pessoa J.S. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol. Rev, 2019, vol. 43 (2), pp. 123–144. DOI: 10.1093/femsre/fuy043
- Choby J.E., Howard-Anderson J., Weiss D.S. Hypervirulent Klebsiella pneumoniae — clinical and molecular perspectives. J Intern Med, 2020, vol. 287 (3), pp. 283–300. DOI: 10.1111/joim.13007
- Candan E.D., Aksoz N. Klebsiella pneumoniae: characteristics of carbapenem resistance and virulence factors. Acta Biochim. Pol, 2015, vol. 62 (4), pp. 867–874. DOI: 10.18388/abp.2015_1148
- Guoying W., Guo Z., Xiaoyu C., Longxiang X., Hongju W. The Characteristic of Virulence, Biofilm and Antibiotic Resistance of Klebsiella pneumonia. IJERPH, 2020, 28, vol. 17 (17), p. 6278. DOI: 10.3390/ijerph17176278
- Nakamura-Silva R., Cerdeira L., Oliveira-Silva M., da Costa K.R.C, Sano E., Fuga B., Moura Q., Esposito F., Lincopan N., Wyres K., Pitondo-Silva A. Multidrug-resistant Klebsiella pneumoniae: a retrospective study in Manaus, Brazil. Arch Microbiol, 2022, vol. 204 (4), p. 202. DOI: 10.1007/s00203-022-02813-0
- Kuzmenkov A.Y., Trushin I.V, Vinogradova A.G., Avramenko A.A., Sukhorukova M.V., Malhotra-Kumar S., Dekhnich A.V., Edelstein M.V., Kozlov R.S. AMRmap: an interactive web platform for analysis of antimicrobial resistance surveillance data in Russia. Front Microbiol, 2021, vol. 12, p. 620002. DOI: 10.3389/fmicb.2021.620002
- Gudiol C., Albasanz-Puig A., Cuervo G., Carratalà J. Understanding and managing sepsis in patients with cancer in the era of antimicrobial resistance. Front Med (Lausanne), 2021, vol. 8, p. 636547. DOI: 10.3389/fmed.2021.636547
- Meng H., Han L., Niu M., Xu L., Xu M., An Q., Lu J. Risk factors for mortality and outcomes in hematological malignancy patients with carbapenem-resistant Klebsiella pneumoniae bloodstream infections. Infect Drug Resist, 2022, vol. 15, pp. 4241–4251. DOI: 10.2147/IDR.S374904
- Metodicheskie ukazaniya MUK 4.2.3115-13. Laboratornaya diagnostika vnebol’nichnykh pnevmoniy (utv. i vvedeny v deystvie Federal’noy sluzhboy po nadzoru v sfere zashchity prav potrebiteley i blagopoluchiya cheloveka 21.10.2013) [Guidelines MUK 4.2.3115-13. Laboratory diagnosis of community-acquired pneumonia (approved and put into effect by the Federal Service for Surveillance on Consumer Rights Protection and Human Welfare on October 21, 2013)], available at: https://base.garant.ru/70608740
- Metodicheskie rekomendatsii MR 4.2.0114-16. Laboratornaya diagnostika vnebol’nichnoy pnevmonii pnevmokokkovoy etiologii (utv. i vvedeny v deystvie Federal’noy sluzhboy po nadzoru v sfere zashchity prav potrebiteley i blagopoluchiya cheloveka 20.10.2016) [Methodological recommendations MP 4.2.0114-16. Laboratory diagnosis of community-acquired pneumonia of pneumococcal etiology (approved and put into effect by the Federal Service for Surveillance on Consumer Rights Protection and Human Welfare on October 20, 2016)], available at: https://docs.cntd.ru/document/456092897
- Schubert B.D., Ku H., Kabwe M., Nguyen T.H., Irving H., Tucci J. Effects of Klebsiella pneumoniae Bacteriophages on IRAK3 Knockdown/Knockout THP–1 Monocyte Cell Lines. Viruses, 2022, vol. 14 (11), pp. 25–82. DOI: 10.3390/v14112582