pm mfvt1
    • Main page
      • About journal
      • Articles. Working with contents
      • Editor-in-chief
      • Editorial Council
      • Editorial Board


      • For authors
      • Standards for formatting information
      • Reviewing
      • Politics editorial board
      • Ethics of journal publications


      • For advertisers
      • Subscription
      • About the Publishing House
      • Contact us
  • Electrical resistance of the lungs and intercostal muscles in rats with arterial hypertension

    Редактор | 2017, Original articles, Practical medicine 02 (17) Current questions of diagnosis | 23 апреля, 2017

    N.L. KOLOMEYETS, I.M. ROSHCHEVSKAYA

    The Komi Scientific Centre of the Ural Division of the Russian Academy of Sciences, 24 Kommunisticheskaya Str., Syktyvkar, Komi Republic, Russian Federation, 167982

    Kolomeyets N.L. ― Cand. Phys.-Math. Sc., Researcher of the Department of Comparative Cardiology, tel. (821) 239-14-51, e-mail: n.kolomeets@cardio.komisc.ru

    Roshchevskaya I.M. ― D. Biol. Sc., Corresponding Member of the Russian Academy of Sciences, Head of the Department of Comparative Cardiology, tel.: (821) 239-14-51, e-mail: compcard@mail.ru

    The surface ECG can be influenced by exocardial factors of electricity transmission. The significantly less value of active, reactive resistance, and phase angle of electrical impedance of the lungs and intercostal muscles was revealed in hypertensive rats of SHR line in comparison with normotensive rats of Visatr line, which testifies to a change of physiological condition of the tissues during the development of arterial hypertension.

    Key words: electrical resistance, arterial hypertension.

    REFERENCES

    1. Borcea L. Electrical impedance tomography. Inverse Problems, 2002, no. 8, rr. 99-136.
    2. Nguyen D.T., Jin C., Thiagalingam A., McEwan A.L. A review on electrical impedance tomography for pulmonary perfusion imaging. Physiol. Meas, 2012, vol. 33, rr. 695–706.
    3. Lange N.R., Schuster D.P. The measurement of lung water. Crit. Care, 1999, vol. 3, pp. R19-R24.
    4. Trepte C.J.C., Phillips C.R., Solà J. et al. Electrical impedance tomography (EIT) for quantification of pulmonary edema in acute lung injury. Crit. Care, 2016, vol. 20, rr. 1–9.
    5. Noble T.J., Morice A.H., Channer K.S. et al.  Monitoring patients with left ventricular failure by electrical impedance tomography.  Eur. J. Heart Fail, 1999, vol. 1, no.  4, rr. 379-384.
    6. Smit H.J., Vonk A., Noordegraaf, Roeleveld R.J. et al. Epoprostenol-induced pulmonary vasodilatation in patients with pulmonary hypertension measured by electrical impedance tomography.  Physiol. Meas, 2002, vol. 23, no.  1, pp. 237-243.
    7. Tornuev Yu.V., Nepomnyashchikh D.L., Nikityuk D.B. et al. Diagnostic possibilities of noninvasive bioimpedanceometry. Fund. issl, 2014, no.  10, pp. 782–788 (in Russ.).
    8. Nikolaev D.V., Smirnov A.V., Bobrinskaya I.G., Rudnev S.G. Bioimpedansnyy analiz sostava tela cheloveka [Bioimpedance analysis of human body composition]. Moscow: Nauka, 2009. 392 p.
    9. Chumlea W.C., Guo S.S., Cockram D.B., Siervogel R.M. Mechanical and physiologic modifiers and bioelectrical impedance spectrum determinants of body composition.  Am. J. Clin. Nutr, 1996, vol. 64 (suppl), rr. 4l3S-422S.
    10. Bagaev S.N. Sistema krovoobrashcheniya i arterial’naya gipertoniya: biofizicheskie i genetiko-fiziologicheskie mekhanizmy, matematicheskoe i komp’yuternoe modelirovanie [The circulatory system and arterial hypertension: biophysical and genetic-physiological mechanisms, mathematical and computer modeling]. Novosibirsk: Izd-vo SO RAN, 2008. 252 p.
    11. Zhuravlev D.A. Models of arterial hypertension. Spontaneous hypertensive rats. Arterial’naya gipertenziya, 2009, vol. 15, no.  6, pp. 721–723 (in Russ.).
    12. Namakanov B.A., Rasulov M.M. Endothelial dysfunction in hypertension is a risk factor for cardiovascular complications.  Kardiovaskulyarnaya terapiya i profilaktika. 2005, vol. 4. no.  6, part II, pp. 98–101 (in Russ.).
    13. Wise R.G., Huang C.L.-H., Gresham G.A. et al. Magnetic resonance imaging analysis of left ventricular function in normal and spontaneously hypertensive rats. J. of Physiology, 1998, vol. 513, no.  3, pp. 873–887.
    14. Roshchevskiy M.P. Izbrannye trudy. Sravnitel’naya kardiologiya i ekologicheskaya fiziologiya. 1978-1999 [Selected works. Comparative cardiology and ecological physiology. 1978-1999]. Syktyvkar, 2014. Vol. 3. 868 p.
    15. Shorokhov Yu.V., Roshchevskaya I.M. The electric field of the heart in the period of depolarization of the ventricles in rats of the NISAG line with different degrees of arterial hypertension. Izvestiya Komi nauchnogo tsentra UrO RAN, 2014, iss. 2, no. 18, pp. 46-49 (in Russ.).
    16. Maanja M., Wieslander B., Schlegel T.T. et al.  Diffuse Myocardial Fibrosis Reduces Electrocardiographic Voltage Measures of Left Ventricular Hypertrophy Independent of Left Ventricular Mass.  J. Am. Heart Assoc, 2017, vol. 22, no. 6 (1).
    17. Klepfer R.N., Johnson C.R., MacLeod R.S. The effects of inhomogeneities and anisotropies on electrocardiographic fields: A three-dimensional finite element study. IEEE Trans. Biomed. Eng, 1997, vol. 44, no.  8, pp. 706-719.
    18. Kolomeets N.L., Smirnova S.L., Roshchevskaya I.M. Electrical resistance of the lungs, intercostal muscles and kidneys of hypertensive rats of the NISAG line. Biofizika, 2016, vol. 61, iss. 3, pp. 590-597 (in Russ.).
    19. Rigaud B., Hamzaoui L., Frikha M.R., et.al. In vitro tissue characterization and modelling using electrical impedance measurements in the 100 Hz-10 MHz frequency range. Physiol. Meas, 1995, vol. 16, pp. A15–28.
    20. Burlakova E.V., Veapintsev B.N., Kol’s O.R., Kriger Yu.A. Praktikum po obshchey biofizike v 8 vyp. Vyp. III-IV. Issledovaniya bioelektricheskikh yavleniy v tkanyakh i kletkakh  [Workshop on general biophysics in 8 issues. Issue. III-IV. Investigations of bioelectric phenomena in tissues and cells]. Moscow: Vysshaya shkola, 1961. 260 p.
    21. Kolomeets N.L. A.s. no.  2015612667 RF. Analiz bioelektricheskogo impedansa segmentov, organov i tkaney tela zhivotnykh i cheloveka: svidetel’stvo ob ofitsial’noy registratsii programmy dlya EVM; zayavitel’ i pravoobladatel’ FGBUN Komi NTs UrO RAN [A.c. № 2015612667 of the Russian Federation. Analysis of bioelectrical impedance of segments, organs and tissues of the body of animals and humans: evidence of the official registration of a computer program. The applicant and the owner of the FGBUN Komi NC of the UrB RAS]. no.  2014663579; zayavl. 12.2014; zaregistr. 24.02.2015. 1 p.
    22. Tsvetkov A.A. Bioimpedansnye metody kontrolya sistemnoy gemodinamiki [Bioimpedance methods of monitoring systemic hemodynamics]. Moscow: Izdatel’stvo Firma “Slovo”, 2010. 330 p.
    23. Bobrinskaya I.G., Bilalova E.F., Moroz V.V. et al.  Noninvasive method for evaluation of cerebral edema in patients with craniocerebral trauma.  Obshchaya Reanimatologiya, 2007, vol. III, pp. 5-6 (in Russ).
    24. Bioimpedance and Bioelectricity Basics, edit. S. Grimnes, O.G.Martinsen; Third Edition. Academic press, 2015. P. 563.
    25. Impedansnaya elektrokhirurgiya [Impedance electrosurgery]. Novosibirsk: Nauka, 2000. 237 p.
    26. Mao S., Dong X., Fu F. et al.  Estimation of postmortem interval using an electric impedance spectroscopy technique: a preliminary study .  Sci. Justice, 2011, vol. 51, no.  3, rr. 135-138.
    27. Aharinejad S., Schraufnagel D.E., Böck P. et al. Spontaneously hypertensive rats develop pulmonary hypertension and hypertrophy of pulmonary venous sphincters.  Am. J. Pathol, 1996, Vol. 148, no.  1, rr. 281-290.
    28. Plotnikov M.B., Aliev O.I., Anishchenko A.M. et al. Dynamics of blood pressure and quantitative indicators of erythrocytes in SHR rats in early terms of arterial hypertension formation. Rossiyskiy fiziologicheskiy zhurnal im. I.M. Sechenova, 2015, vol. 101, no. 7, pp. 822-828 (in Russ.).
    29. Nopp P., Rapp E., Pfutzner H. et al.   Dielectric properties of lung tissue as a function of air content.  Phys. Med. Biol, 1993, vol. 38, pp. 699-716.
    30. Zhao T.X., Brown B.H., Nopp P. et al. Modelling of cardiac-related changes in lung resistivity measured with EITS.  Physiol. Meas, 1996, vol. 17, suppl. 4A, pp. A227-A234.
    31. Arad M., Zlochiver S., Davidson T. et al. The detection of pleural effusion using a parametric EIT technique . Physiol. Meas, 2009, vol. 30, no.  4, pp. 421-428.
    32. Raaijmakers E., Faes T.J.C., Meijer J.M. et al.  Estimation of non-cardiogenic pulmonary oedema using dual-frequency electrical impedance.  Med. Biol. Eng. Comput, 1998, vol. 36, pp. 461-468.
    33. Berneis K., Keller U. Bioelectrical impedance analysis during acute changes of extracellular osmolality in man. Clinical Nutrition, 2000, vol. 19, no.  5, rr. 361-366.
    34. Varlet-Marie E., Gaudard A., Mercier J. et al.  Is whole body impedance a predictor of blood viscosity.  Clinical Hermorheology and Microcirculation, 2003, vol. 28, pp. 129-137.
    35. Davenport A. Does peritoneal dialysate affect body composition assessments using multi-frequency bioimpedance in peritoneal dialysis patients? Eur. J. Clin. Nutr, 2013, vol. 67, no. 2, rr. 223-225.

    Метки: 2017, Arterial hypertension, electrical resistance, I.M. ROSHCHEVSKAYA, N.L. KOLOMEYETS, Practical medicine 02 (17) Current questions of diagnosis

    ‹ Prevalence and structure of isolated night hypertension during pregnancy depending on the diagnostic criteria of arterial hypertension Сognitive impairment in the course of arterial hypertension (prospective study) ›
    • rus Версия на русском языке


      usa English version site


      Find loupe

      

    • PARTNERS

      пов  logonew
    «Для
    Practical medicine. Scientific and practical reviewed medical journal
    All rights reserved ©