Changes in the left atrium volume in patients with iron deficiency within 6 months after myocardial infarction
D.R. KHASTIEVA1, N.A. TARASOVA1, M.I. MALKOVA1, E.B. ZAKIROVA2, N.R. KHASANOV1
1Kazan State Medical University, Kazan
2Municipal Clinical Hospital No. 7 named after M. N. Sadykov, Kazan
Contact details:
Khastieva D.R. — Assistant Lecturer of the Department of Introduction to Internal Diseases named after Prof. C. C. Zimnitskiy
Address: 49 Butlerov St., Kazan, Russian Federation, 420012, tel.: +7-905-020-44-07, e-mail: dilyara_khastieva@mail.ru
According to scarce data, iron deficiency (ID) is a risk factor for worsening prognoses of ischemic heart disease, in particular, myocardial infarction (MI).
The purpose — to study the changes in the maximal volume of left atrium in patients with ID treated with iron supplements and normal iron status within 6 months after myocardial infarction.
Material and methods. The study included 146 patients (54 women (37%) and 92 men (63%)) hospitalized Municipal Clinical Hospital No. 7 named after M.N. Sadykov with myocardial infarction in 2022. The patients were divided into 2 groups: group 1 comprised 80 (55%) patients with iron deficiency, and group 2 consisted of 66 (45%) patients without iron deficiency. The groups were comparable in terms of gender, comorbidities and drug therapy. The patients underwent correction of iron deficiency, echocardiographic examination in the first 24 hours after hospitalization and 6 months later to assess changes in target cardiac parameters.
Results. We found a statistically significant increase in median left atrium volume after 6 months compared with the initial volume in patients in group 2 (63.0 ml (49–65) and 58.5 ml (47‒64), respectively (р < 0.001). In group 1, left atrium volume did not change (р = 0.145). There was no statistically significant difference in median left atrium volume in groups 1 and 2 both initially and after 6 months (p = 0.390).
Conclusion. Our results indicate that there was no increase in left atrium volume within 6 months after myocardial infarction in patients who underwent ID correction.
Key words: iron deficiency, myocardial infarction, maximal left atrium volume.
(For citation: Khastieva D.R., Tarasova N.A., Malkova M.I., Zakirova E.B., Khasanov N.R. Changes in the left atrium volume in patients with iron deficiency within 6 months after myocardial infarction. Practical medicine. 2023. Vol. , № , P.)
REFERENCES
- Russian Cardiological Society. Stable coronary heart disease. Clinical recommendations 2020. Rossiyskiy kardiologicheskiy zhurnal, 2020, vol. 25, iss. 11, p. 206 (in Russ.). DOI: 10.15829/29/1560-4071-2020-4076
- Enjuanes C., Bruguera J., Grau M. et al. Iron status in chronic heart failure: impact on symptoms, functional class and submaximal exercise capacity. Rev Esp Cardiol (Engl Ed), 2016, vol. 69 (3), pp. 247–255. DOI: 10.1016/j.rec.2015.08.018
- Martens P., Nijst P., Verbrugge F. et al. Impact of iron deficiency on exercise capacity and outcome in heart failure with reduced, mid-range and preserved ejection fraction. Acta Cardiol, 2018, vol. 73 (2), pp. 115–123. DOI: 10.1080/00015385.2017.1351239
- Núñez J., Comín-Colet J., Miñana G. et al. Iron deficiency and risk of early readmission following a hospitalization for acute heart failure: Iron deficiency and rehospitalization. European Journal of Heart Failure, 2016, vol. 18(7), pp. 798–802. DOI: 10.1002/ejhf.513
- Ponikowski P., van Veldhuisen D., Comin-Colet J. et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur Heart J, 2015, vol. 36, pp. 657–668. DOI: 10.1093/eurheartj/ehu385
- van Veldhuisen D., Ponikowski P., van der Meer P. et al. Effect of ferric carboxymaltose on exercise capacity in patients with chronic heart failure and iron deficiency. Circulation, 2017, vol. 136, pp. 1374–1383. DOI: 10.1161/CIRCULATIONAHA.117.027497
- Cosentino N., Campodonico J., Pontone G. et al. Iron deficiency in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. International Journal of Cardiology, 2020, vol. 300, pp. 14–19. DOI: 10.1016/j.ijcard.2019.07.083
- Tullio M., Qian M., Thompson J. et al. Left atrial volume and cardiovascular outcomes in systolic heart failure: effect of antithrombotic treatment. ESC Heart Fail, 2018, vol. 5, pp. 800–808. DOI: 10.1002/ehf2.12331
- Thygesen K., Alpert J., Jaffe A. et al. Fourth universal definition of myocardial infarction (2018). Circulation, 2018, vol. 138 (20), pp. e618–e651. DOI: 10.1161/CIR.0000000000000617
- Lang R., Badano L., Mor-Avi V. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging, 2015, vol. 16, pp. 233–270. DOI: 10.1093/ehjci/jev014
- Kizer J., Bella J., Palmieri V. et al. Left atrialdiameter as an independent predictor of first clinical cardiovascularevents in middle-aged and elderly adults: the Strong Heart Study(SHS). Am Heart J, 2006, vol. 151, pp. 412–418. DOI: 10.1016/j.ahj.2005.04.03
- Moller J., Hillis G., Oh J. et al. Left atrial volume: a powerful predictor of survival after acute myocardial infarction. Circulation, 2003, vol. 107, pp. 207–212. DOI: 10.1161/01.CIR.0000066318.21784.43
- Ristow B., Ali S., Whooley M.A. et al. Usefulness of left atrial volumeindex to predict heart failure hospitalization and mortality in ambulatorypatients with coronary heart disease and comparison to left ventricular ejection fraction (from the Heart and Soul Study). Am J Cardiol, 2008, vol. 2, pp. 70–76. DOI: 10.1016/j.amjcard.2008.02.099
- Vaziri S., Larson M., Benjamin E. et al. Echocardiographic predictors of nonrheumatic atrial fibrillation. The Framingham Heart Study. Circulation, 1994, vol. 89, pp. 724–730. DOI: 10.1161/01.cir.89.2.724
- Thomas L., Marwick T., Popescu B. et al. Left atrialstructure and function, and left ventricular diastolic dysfunction: JACCstate-of-the-art review. J Am Coll Cardiol, 2019, vol. 73, pp. 1961–1977. DOI: 10.1016/j.jacc.2019.01.059
- Zeller T., Waldeyer C., Ojeda F. et al. Adverse outcome prediction of iron deficiency in patients with acute coronary syndrome. Biomolecules, 2018, vol. 8 (3), p. 60. DOI: 10.3390/biom8030060
- Gonzalez-D’Gregorio J., Miñana G., Núñez J. et al. Iron deficiency and long-term mortality in elderly patients with acute coronary syndrome. Biomarkers in medicine, 2018, vol. 12, pp. 987–999. DOI: 10.2217/bmm-2018-0021
- Chopra V.K., Anker S.D. Anaemia, iron deficiency and heart failure in 2020: facts and numbers. ESC Heart Fail, 2020, vol. 7 (5), pp. 2007–2011. DOI: 10.1002/ehf2.12797
- Fujinaga H. Okumura T., Harada K. Iron deficiency predicts poor outcomes after primary intervention in nonanemic patients with stemi. Journal of the American College of Cardiology, 2013, vol. 61 (10), p. e206. DOI: 10.1016/s0735-1097(13)60207-7
- Shen J., Zhou Q., Liu Y. et al. Evaluation of left atrial function in patients with iron-deficiency anemia by two-dimensional speckle tracking echocardiography. Cardiovasc Ultrasound, 2016, vol. 14 (1), p. 34. DOI: 10.1186/s12947-016-0078-z
- Tanne Z., Coleman R., Nahir M. et al. Ultrastructural and cytochemical changes in the heart of iron-deficient rats. Biochemical Pharmacology, 1994, vol. 47 (10), pp. 1759–1766. DOI: 10.1016/0006-2952(94)90303-4
- Dereli S., Bayramoğlu A., Özer N. et al. Evaluation of left atrial volume and function by real time three-dimensional echocardiography in anemic patients without overt heart disease before and after anemia correction. The International Journal of Cardiovascular Imaging, 2019, vol. 35 (9), pp. 1619–1626. DOI: 10.1007/s10554-019-01609-6